
Department of Computer Science
George Mason University
Technical Report Series

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/
703-993-1530

Security Policy Cognizant Module Composition

Paul Seymer, Angelos Stavrou, Duminda Wijesekera, and Sushil Jajodia
{pseymer|astavrou|dwijesek|jajodia}@gmu.edu

Technical Report GMU-CS-TR-2010-1

Abstract

Component-based software development and deploy-
ment is based on developing individual software mod-
ules that are composed on an as needed basis. Such
modules expose the computations they provide and their
dependencies on providing these computations - that re-
sults in a well knownrequires-providesspecifications
for modules. This paper provides a framework to com-
bine modules that specify their requires-provides inter-
faces in a policy dependent way. Our framework specify
policies as combinations of Constraint Logic Program-
ming (CLP) based rules and our policies can cover mul-
tiple aspectsassociated of compositions, such as secu-
rity and quality of service. We apply our framework to
specify Quality of Protection (QoP) and Quality of Ser-
vice (QoP) policies. An example shows the applicability
of our policy language to a teleconferencing application
with multiple security and resource usage policies.

1 Introduction

In component-based software development, modules are
developed independently and composed on anas needed
basis [30]. In order to facilitate such compositions (ei-
ther statically or dynamically), the composer needs to
be aware of what each module provides as a service and
what it requires in order to provide that service - result-
ing in the well knownrequires-providesspecification of
modules. Making theserequires-providesinterfaces pol-
icy dependent is the objective of this paper. In order to do
so, we propose aConstraint Logic Programmingbased
rule language to specify therequires-provides policies.
Our sample policies shown in this paper addresses two
aspectsof software composition; viz.,Quality of Protec-
tion (QoP)andQuality of Service (QoS), specifying se-

curity and performance policies. For QoP, we show two
kinds policies; viz., access to individual modules and in-
formation flown between them as a consequent to com-
position. For QoS, we show how to integrate local re-
source control policies of individual modules and com-
munication resource policies between them. Figure 1
shows our overall architecture.

As an example, consider multimedia conferencing,
where the conference coordinator residing at one site
wants to use two other conferees with differing comput-
ing and communicating resources that are subjected to
different access control and communication policies. For
example, the coordinator may reside at a site that allows
video, audio, and HAIPE encryption, where one partici-
pant with a land-line may only be allowed to use DES en-
cryption with audio and video capabilities and the other
participant joining by mobile telephone may only have
the audio stream, but no video or encryption capabilities.
Consequently, for the modules to be correctly composed,
the conference should deliver both audio and video en-
crypted using DES to the second participant and only an
audio stream to the third participant.

The advantage of this framework are many. Firstly, it
separates independent aspects of composition (e.g. QoP
and QoS) from structural composability criteria. Sec-
ondly, it further provides a framework to separates dif-
ferent sub-aspects within an aspects. Thirdly, it provides
a basis to reason about all aspects and sub-aspects uni-
formly. Lastly, it adds policies to aspect-oriented com-
position.

The rest of the paper is written as follows. Section 2
presents the formal language of the rule-based composi-
tion framework that is sufficiently expressible to accom-
modate many notions of module composition mostly re-
flecting existing definitions. Section 3 presents the sub-
language for security policies. Section 4 presents the

1

Local

QoS
 Communication

QoS

Local

QoS

QoS

Policy

Module1
 Module2

Security

Policy

Local

access control

policy

Local

access control

policy

Global flow

control policy

QoS

Composition

Security

E
x
p
o
r
t
 E

 x
 p
 o
 r
t

E
x
p
o
r
t

E

x
p

o
r

t

E

x
p

o
r

t

E
x
p
o
r
t
 E
x
p
o
r
t

Provides
 Requires

Provides
Requires

E

x
p

o
r

t

Figure 1: Architecture of the Policy Framework

sub-language for QoS policies. Section 5 presents the
semantics and models for module composition syntax.
Section 6 presents an example composition of a telecon-
ference. Section 7 presents related work and Section 8
presents our conclusions.

2 A Rule-based Language to Spec-
ify Module Composition

We propose using aset constraintbased logic program-
ming language to specify policies. The version of set
theory we use is CLP(SET), the hereditarily finiteset
theory developed by Dovier et al. [15, 16, 17], where the
hereditarily finiteness refers to the fact that all sets are
constructed out of a finite universe (of so calledurele-
ments) by applying a finite collection of composition op-
erators. The set of operators we use are{=, 6=,∈, 6∈,∪3, 6
∪3, ‖, 6‖}, where∪3 is the ternary predicateX∪3 Y = Z,
An analogous explanation applies for∩3. Similarly X ‖
Y holds iff X ∩Y = ∅. Our constraints are conjunctions
and disjunctions of these constraint predicates, instanti-
ated with terms belonging to a chosen set ofsorts. We
use five sorts for Modules (N), Locations (L), Interfaces
(I), QoP policies (QoP) and QoS options (QoS), respec-
tively refereed to asKerN , KerL, KerI , KerQoP and
KerQoS . Each sort has its own constants and function
symbols. We use five constant symbols to denoteun-
defined values⊥N ,⊥L,⊥I ,⊥QoP and⊥QoS to model
partial functions.

In addition, we use sets created with the∅, such as
{∅, {∅}} to model the structure of any well-founded
finitely branching tree. As will be seen shortly, we
use such nested sets to limit the recursive backtracking
through rule chains. We also use nested sets to code in-
tegers. For example{{. . . {∅} . . .}} where the empty set
∅ is embedded inn braces is used to represent the integer

n.
The rest of the paper uses names starting with an upper

case letter for variables and names starting with a lower
case letter for constants, and sometimes use a name with
ahat above(for example ̂ReqM) to describe a term with
variables and constants, when it is too long the write out
the details within a rule. We now describe the other parts
of our language.
module(Name,Location,Req,Prov,Depth):
is a 5-ary predicate where theName is a constant or
variable fromSetN representing a name. Similarly,
Location is a constant or a variable fromSetL,
representing a location (or a set of locations).Req
is a constant or a variable representing an ordered
triple of the typeSetI × SetQoP × SecQoS used to
model a set with elements of the form (interface, Set
of QoP and QoS options) representing the collection
of requires interfaces with their options andDepth
(sometimes denoted as ’Z’) is a set term used to encode
the recursive depth. Similarly,Prov is a constant or
variable from the same type as that ofReq, representing
the interfaces and the options of theprovidesinterfaces
of the component. In this version where we do not use
recursive compositions, we use the value of∅ for the
Depth attribute.
cModule(Name,Location,Req,Prov,Depth):]
is a 5-ary predicate with the same type of predicates
as the module predicate, representing a composed
module. In this version where we do not use recursive
compositions, we use the value of∅ for the Depth
attribute.
composable2(Name1,Location1,Req1,Prov1,
Name2,Location2,Req2,Prov2,Depth):
is an 9-ary predicate where
(Name1,Location1,Req1,Prov1),
(Name2,Location2,Req2,Prov2) are the
two components, and theprovides interfaces of
the second are connected to therequires interfaces
of the first andDepth is a set term used to en-
code the recursive depth. We also use another
predicate composable3(Name1,Location1,
Req1,Prov1,Name2,Location2,Req2,Prov2,
Name3,Location3,Req3,Prov3,Depth) that
composes three modules where theprovidesinterfaces
of the second and the third modules are connected to the
requiresinterfaces of the first.
structOK2(Name1,Location1,Req1,Prov1,
Name2,Location2,Req2,Prov2,Depth):
is an 9-ary predicate where
(Name1,Location1,Req1,Prov1),
(Name2,Location2,Req2,Prov2) belong to two
components andDepth is a set term used to encode the
recursive depth. This predicate specifies the structural
compatibility requirements between theproviderand the

2

requestermodules. Similarly, we use a 12-ary predicate
structOK3(Name1,Location1,Req1,Prov1,
Name2,Location2,Req2,Prov2,Name3,,
Location3,Req3,Prov3) to model the structural
integrity of a module composed from three sub-modules.

qopOK2(Name1,Location1,Req1,Prov1,
Name2,Location2,Req2,Prov2,Depth):
is an 9-ary predicate where each of
(Name1,Location1,Req1,Prov1) and
(Name2,Location2,Req2,Prov2) belong to
two modules. The predicateqopOK2is used to specify
the security policy for module composition. Similarly,
we use a 12-aryqopOK3() predicate for composing
three modules.

qosOK2(Name1,Location1,Req1,Prov1,
Name2,Location2,Req2,Prov2, Depth): is
an 9-ary predicate where
(Name1,Location1,Req1,Prov1),
(Name2,Location2,Req2,Prov2) are pa-
rameters belonging to two modules andDepth is
a set term used to encode the recursive depth. The
predicateqosOK2 is used to specify QoS policies of the
composition. We also use a 12-ary predicateqosOK3()
to specify QoS preferences for three modules.

typeOK2(Name1,Location1,Req1,Prov1,
Name2,Location2,Req2,Prov2,Depth):
is an 9-ary predicate where all interfaces in
(Name1,Location1,Req1,Prov1) match
the respective interfaces of(Name2,Location2,
Req2,Prov2) in type andDepth is a set term used to
encode the recursive depth. Similarly, we use a 12-ary
predicatetypeOK3() to specify type compatibility of
three modules.

2.1 Specifying Module Composition Poli-
cies

In this section we specify rules about module compo-
sition. Composition rules must satisfy some structural
properties such as the requirement that one module pro-
vide the interfaces needed by the other module. First, we
specify the structural composition rules.

composable2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Z) ←

structOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Zs),
qopOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Zp),
qosOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Zq)

Zs, Zp, Zq ∈ Z.

This rule defines structural compatibility using
structOK2(), security policy specified using the
predicateqopOK2() and QoS policy specified using the
predicateqosOK2(). A similar definition can be given
for composable3().

2.2 Structural Composition Policies

Structural composability can be specified using the set
constraint language and other user defined predicates as
given in the following two examples:
structOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Z)←
cModule(N1, L1, Re1, P r1, S1),
cModule(N2, L2, Re2, P r2, S2),
typeOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Stype),
Pr1 ∩ Pr2 = ∅, Re1 ∩Re2 = ∅, Re1 ⊆ Pr2,
S1, S2, Stype ∈ S.

This example says that two modulesN1 andN2 are
structurally compassable iff they do not share anypro-
vides interfaces orrequires interfaces and therequires
interfaces of the first moduleN1 are provided by the sec-
ond moduleN2. By adding an extra clauseRe1 ⊆ Pr2
to the last line of the policy, we can allow partial com-
positions where we the second moduleN2 can provides
more interfaces than those required byN1. Also by re-
versing the constraintRe1 ⊆ Pr2 to Re1 ⊇ Pr2, we
can acceptpartial compositions where the second mod-
ule is unable to provide all required interfaces. By doing
so, we can partially composeN1 andN2 and then com-
pose this intermediate result with another moduleN3 to
obtain a different definition of composition showing the
flexibility of our design. The conditionS1, S2, Stype ∈ S

is used to ensure the termination of queries.

3 QoP Policies

As mentioned, our sample QoP policies either control ac-
cess to modules or information that flow between them.
We modifyAttribute-based Access Control[54] of Wang
et al. for the former andFlexFlow[12] of Chen et al. for
the latter. These policies have their own languages and
are evaluated separately. Their evaluations are then im-
ported into the module composition framework by using
two kinds of predicates.
Flow Control: secureFlow2(Sub1,Role1,
Org1,N1,L1,Req1,Prov1,Sub2,Role2,
Org2,N2,L2,Req2,Prov2,Z), say that informa-
tion is allowed to flow between modulesN1 and
N2 when they are composed. A similar predicate
secureFlow3(Sub1,Role1,Org1,N1,
L1,Req1,Prov1,Sub2,Role2,Org2,N2,L2,
Req2,Prov2, Sub3,Role3,Org3,N3,L3,
Req3,Prov3,Z) is used to exercise flow control be-
tween the modulesN1, N2 andN3. The last variableZ is
used to ensure that recursion terminates.
Access Control:do(Sub,Role,Org,Loc,Mod,
Int,Z) says that a subjectSub playing roleRole be-
longing to organizationOrg at locationLoc can execute

3

interfacesInt belonging to moduleMod and the last
variableZ is used to ensure that recursion terminates.

Using the above two predicates exported from
the global flow control policy specification mod-
ule and the two local policy specification mod-
ules at locations L1 and L2 are related to
qopOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Z) by
the following rule.
qopOK2(N1, L1, Re1, P r1, N2, L2, Re2, Pr2, Z)←
secureF low2(Sub1, Role1, Org1, N1, L1, Re1, P r1,
Sub2, Role2, Org2, N2, L2, Re2, P r2, Zf),
doL1(Sub1, Role1, Org1, L1, N1, P r1∪Re1, Z1)),
doL2(Sub2, Role2, Org2, L2, N2, P r2∪Re2, Z2)),
Zf , Z1, Z2 ∈ Z.

As described, in the above rule, the requester-
provider policy is considered secure if the
flow is permitted by flow control predicate
secureF low2(N1, L1, Re1, P r1, N2, L2, Re2, P r2,

Zf), and the two access control predicates
doL1(Sub1, Role1, Org1, L1, N1, P r1 ∪ Re1, Z1)
anddoL2(Sub2, Role2, Org2, L2, N2, P r2 ∪ Re2, Z2)
allow subject Sub1 to executeN1’s interfaces and
subjectSub2 to executeN2’s interfaces respectively.

3.1 The Flow Control Sub-language

In order specify flow control policies, we add three more
sorts,Sub for subjects and andRole for roles andOrg

for organizations, and use the following predicates:
Predicates in Stratum 1:We use two binary predicates,
owner(s,m,∅)with m ∈ Names ands ∈ Sub where
owner(s,m,∅) is true if modulem is owned by sub-
ject s. Similarly, playRole(s,r) wheres ∈ Sub

andr ∈ Role says that subjects performs the role (i.e.
job function or has a military rank)r. We also use a third
predicateorganization(s,org,∅), saying that the
subjects works for the organizationorg.
Predicates in Stratum 2: We use two 14-
ary predicates and two 21-ary predicates
canFlow2(Sub1,Role1,Org1,N1,L1,Req1,
Prov1,Sub2,Role2,Org2,L2,N2,Req2,
Prov2,Z), andcannnotFlow2(Sub1,Role1,
Org1, N1,L1,Req1,Prov1,Sub2,Role2,
Org2,N2,L2,Req2,Prov2,Z). Similar def-
initions exists for predicatescanFlow3() and
cannotFlow3() used for ternary compositions.
Predicates in Stratum 3: Consists of two predicates
canFlow2*(Sub1,Role1,Org1,
N1,L1,Req1,Prov1,Sub2,Role2,Org2,L2,
N2,Req2,Prov2,Z), andcannnotFlow2*(
Sub1,Role1,Org1,N1,L1,Req1,Prov1,Sub2,
Role2,Org2,N2,L2,Req2,Prov2,Z), that are
used to recursively specify flow control permissions and
prohibitions.

Predicates in Stratum 4: Consists of two predicate
secureFlow2(Sub1,Role1,Org1,N1,L1,
Req1,Prov1, Sub2,Role2,Org2,N2,L2,
Req2,Prov2,Z) andsecureFlow3(Sub1,
Role1,Org1,N1,L1,Req1,Prov1,Sub2,
Role2,Org2,N2,L2,Req2,Prov2,Sub3,
Role3,Org3,N3,L3,Req3,Prov3,Z) that
evaluates the final decision to allow information flow.

A flow control policy is a finite collection of rules con-
structed according to the following constraints:
Rules in Stratum 1: Rules specify basic facts such as the
roles played by modules and modules belonging to orga-
nizations etc. Hence they should have a head predicate
belonging to Stratum 1 and an empty body, and there-
fore should be of the following form,owner(s, m, ∅)←,
playRole(s, r, ∅)← andorganization(s, org, ∅)←.
Rules in Stratum 2: The head predicate must be one
of canFlow2(), cannotFlow2(), canFlow3()
or cannotFlow3() and the bodies may con-
tain predicates from stratum 1 and constraints
from CLP(Set). An example rule is as follows:
cannotF low2(Sub1, Role1, Org1, N1, L1, Req1, P rov1,

Sub2, Role2, Org2, N2, L2, Req2, Prov2, Z)←
organization(L1, O1, Z1),
organization(L2, O2, Z1),
securityLevel(O1, S1, Z2),
securityLevel(O2, S2, Z3),
S2 < S1, Z1, Z2, Z3 ∈ Z.
Rules in Stratum 3: The head predicate of a rule
must have one ofcanFlow2*(),cannotFlow2*(),
canFlow3*(), cannotFlow3*() and the bodies
may contain predicates from strata 1 or 2, constrains
from CLP(Set), or stratum 3 predicates that appear
positively, as shown in the following example.
canF low2 ∗ (Sub1, Role1, Org1, N1, L1, Req1,

P rov1, Sub3, Role3, Org3, N3, L3, Req3, P rov3, Z)←
canF low2(Sub1, Role1, Org1, N1, L1, Req1,
P rov1, Sub2, Role2, Org2, N2, L2, Req2, P rov2, Z1),
canF low2 ∗ (Sub2, Role2, Org2, N2, L2, Req2,
Prov2, Sub3, Role3, Org3, N3, L3, Req3, P rov3, Z2)
Z1, Z2 ∈ Z.
Rules in Stratum 4: This stratum contains the following
rule: secureF low2(Sub1, Role1, Org1, N1, L1, Req1,
P rov1, Sub2, Role2, Org2, N2, L2, Req2, P rov2, Z)←
canF low2 ∗ (Sub1, Role1, Org1, N1, L1, Req1
Prov1, Sub2, Role2, Org2, N2, L2, Req2, P rov2, Z1),
¬cannotF low2 ∗ (Sub1, Role1, Org1, N1, L1, Req1,
Prov1, Sub2, Role2, Org2, N2, L2, Req2, P rov2, Z2)
Z1, Z2 ∈ Z.

FlexFlow [12] shows that this type of a rule-base is
locally stratified, and consequently returns an answer
for every query. As already stated, we export predi-
catessecureFlow2() andsecureFlow3() from
the flow-control sub-language to our security policy

4

specification language. Therefore, some variables need
to be shared between the two sub-policy frameworks.
Section 6 shows how to use the flow control sub language
in enforcing security policies for module composition.

3.2 The Access Control Sub-language

Discretionary access control polices that are stated in
terms of (Subject,Object,Access-method)
needs to be replaced with sextuple
(Subject,Role,Organization,Module
Name, Location, Interfaces) in order to
specify module composition policies. We do so by using
the following predicates, appropriately adopted from
[54].
Predicates in Stratum 1: Has predicates to represent
basic facts such as ownerships, subject-role assignments,
object and subject hierarchies etc.
Predicates in Stratum 2:cando(Subject,
Role,Organization,Module
Name,Location,
Interfaces,Z) andcannotdo(Subject,
Role,Organization, Module Name,
Location,Interfaces,Z) state which module
options are permitted or prohibited from executing.
Stated attributes represents Subjects, Roles played by
the subjects, organizations that roles and subjects belong
to, module name and interfaces with their security and
QoS options.
Predicates in Stratum 3:cando*(Subject,
Role,Organization,Module
Name,Location, Interfaces,Z) and
cannotdo*(Subject,
Role,Organization,Module Name,
Location,Interfaces) are two predicates
used to recursively extend the definitions ofcando()
andcannotdo().
Predicates in Stratum 4:do(Subject,Role,
Organization,Module Name,Location,
Interfaces,Z) expresses the final decision about a
module being able to execute with specified options.

Our access control policies are constructed using re-
served predicates and possibly other application specific
predicates using the following stratification:
Rules in Stratum 1: Specify basic relationships
and application specific facts written as predicate
instances (i.e. rules with empty bodies). Some
examples are owner(Subject, Module, ∅) ←,
role(Subject, Role, ∅) ←, and
organization(Subject, Org, emptyset)←.
Rules in Stratum 2: Rules using cando
and cannotdo heads must be of the
form cando(X, Y, Z, W, U, V, Z) ← B or
cannotdo(X, Y, Z, W, U, V, Z) ← B where the

body B may have predicates from lower strata and
constraint expressions. These are used to state basic
facts about granting/denying access to services.
Rules in Stratum 3: Rules with cando* or
cannotdo* heads can have havecando*,
cannotdo* predicates in their bodies only posi-
tively, but may havecando and other non-reserved
predicates and constraint terms.
Rules in Stratum 4: do(X, Y, Z, W, U, V, Z) ←
cando ∗ (X, Y, Z, W, U, V, Z+),¬cannotdo ∗
(X, Y, Z, W, U, V, Z−), Z+, Z− ∈ Z is the only
rule at this stratum.

Any finite collection of rules conforming to con-
straints (1) through (4) is said to be an access control
policy. Wang et al. [54] provides a fixed point seman-
tics for similar access control policies. But their use in
the module composition framework is limited to being
an exported predicate, and therefore taken as true, iff the
instance is exported.

4 QoS Policies

In QoS policies, we represent total resources require-
ments (of a module and inter-module communication)
as a multiset (i.e. a bag) where every resource unit of
a given type is represented by an element in the bag.
For example, if a mobile phone has 2 CPU threads
and 3 units of buffer space (say in Kilo bytes) avail-
able for applications, total resources available are repre-
sented as{| cpu, cpu, buf, buf, buf |}, where the sym-
bols in between the braces{| and |} are the (repeated)
elements of the resourcebag. We decide if a module
to be used has sufficient resources to execute iff its re-
sources can be packed inside the resource bag offered
by the hosting platform. For example, to verify that
the hardware platform of a mobile phone with resources
{| cpu, cpu, buf, buf, buf |} can accommodate an ap-
plication with an estimated resource requirement (mul-
tiset) U , we need to check ifU is a (multi) subset of
{| cpu, cpu, buf, buf, buf |}. With this representation,
we propose a three level stratified logic programming
language with multi-set constraints as follows:
Predicates in Stratum 1: This stratum specifies service
dependencies. The predicateneeds(S, T) says that the
(subsidiary) set of servicesT are required to provide the
set of (primary) servicesS. allNeeds(S, T) says that
the set of servicesT consists of all subsidiary services
required to provide the set of primary servicesS.
Predicates in Stratum 2: This stratum computes
resource requirements for a given set of services with
all of its QoP and QoS options. In order to express
the resources needed to communicate, two predicates
comRes(N1, L1, P r1, Re1, N2, L2, Re2, P r2, R, Z)

5

andcomRes ∗ (N1, L1, Re1, P r1, N2, L2, P r2, R, Z)
are used. The first one says thatR re-
sources are required to communicate between
modules N1 and N2. The second predicate
comRes∗(N1, L1, Re1, P r1, N2, L2, Re2, P r2, R, Z)
is used to recursively compute resource needs
of dependent services. Finally, the predicate
allComRes(N1, L1, Re1, P r1, N2, L2, Pr2,
Re2, R, Z) says that the total amount of resources
available to be consumed by all software modules isR.

Similarly, to compute the resource needs for local
platforms, we use two predicatelocalRes(N1, L1, P r1,
R, Z) and localRes ∗ (N1, L1, Re1, P r1, R, Z)
where (N1, L1, Re1, P r1) requires resourcesR.
localRes(N1, L1, Re1, P r1, R) say that R re-
sources are needed to service(N1, L1, Re1, P r1),
and localRes ∗ (N1, L1, P r1, Re1, R, Z) is
used in recursive rules that compute the re-
sources needed to execute all dependent services.
allLocalRes(N1, L1, Re1, P r1, R, Z) says that the
total resources requirement to service the module
(N1, L1, Re1, P r1, Z) is R.
Predicates in Stratum 3: This level computes resource
availability on local platforms and communication
links. In order to do so we use two predicates
localLimit(L1, R1) and commLimit(L1, L2, R2)
which respectively says that moduleL1 hasR1 amount
of resources to execute and the total amount of resources
required to communicate between locationsL1 andL2
is R2.
Predicates in Stratum 4: This level renders the
final decision to allow a module to execute on a
host, and connectable modules to connect to each
other. In order to indicate so, we use two predicates,
comResOK(N1, L1, Re1, P r1, N2, L2, Re2, P r2,

R, Z) and localResOK(N1, L1, Re1, P r1, R, Z),
saying that withR resources, the moduleN1 can
execute on its proposed host and modulesN1 andN2
can be connected to each other, respectively.

Predicates listed above can be used in rules of the fol-
lowing kinds.
Rules in Stratum 1: Rules at this stratum are of the
forms P (X1, . . . , Xn, Z) ←, needs(X, Y, ∅) ←
and allNeeds(X, Y, Z) ← Body, where
P (X1, . . . , Xn, Z) is any application dependent
predicate that encodes facts.needs(X, Y) say that
serviceX depends on servicesY, and consequently, in
order to haveX, resources must also be provided forY .
The Body of the last rule may contain application de-
pendent predicates,depends, positive occurrences of
allNeeds multiset constraints andZ1, , . . . , Zn ∈ Z

whereZ1, . . . , Zn are the set variables that occur as the
last parameter in predicates used in the body of the rule.
Rules in Stratum 2: Rules at this stratum recur-

sively definecomRes*() and localRes*() using
positive occupancies of themselves,comRes(),
localRes() and (multi)set constraints respectively.
Consequently,B may have any predicate from stratum
1, but bodiesB andD should not havecomRes() and
localRes() appearing negatively.allComRes()
and allLocalRes() collect all resources needed
to communicate between sitesL1 and L2 and at site
L1 respectively. BodiesC and E may have any
other predicates belonging to lower strata. In the
following four rules, Z1, . . . , Zn are the set variables
that occur as the last parameter in predicates used in
the bodies of the ruleB, C, D and E respectively.
comRes ∗ (N1, L1, Re1, P r1, N2, L2, Re2, P r2, R,Z)

← B, Z1, . . . , Zn ∈ Z.

allComRes(N1, L1, Re1, P r1, N2, L2, Re2, P r2, R, Z)

← comRes ∗ (N1, L1, Re1, P r1, N2, L2, P r2,
Re2, R,Z), C, Z1, , . . . , Zn ∈ Z.

localRes ∗ (N1, L1, Re1, P r1, R, Z)

← D, Z1, . . . , Zn ∈ Z.
allLocalRes(N1, L1, Re1, P r1, R, Z))←

localRes ∗ (N1, L1, Re1, P r1, R, Z), E, Z1, . . . , Zn ∈ Z.

Rules in Stratum 3: Rules in this stratum may have
localLimit(L1, R, Z)orcommLimit(L1, L2, R, Z) as
heads and (set and multi-set) constraints, but their bodies
may not have predicates from stratum 2. They are used to
specify resource limitations on the communication chan-
nels and local sites.

Rules in Stratum 4: Rules at this stratum
has comResOK(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Z)

or localResOK(N1, L1, Re1, P r1, Z) heads and bodies
consisting of predicates from lower strata with the usual
Z1, . . . , Zn ∈ Z. These predicates say that QoS require-
ments are satisfied for communication and local compu-
tations respectively.

We use these predicates to compute the total resource
utility of a module and to specify the policy of deciding
if the modules are to be composed. For example, one
could use an optimistic policy of composing modules if
they consume about 110% of the total available resources
(such as in air-line seat reservations). Conversely, a pes-
simistic policy would not commit more than 60% of the
total available resources. More complex policies can
be composed based on better resource estimates. The
predicates at Stratum 4 are related to exported QoS poli-
cies using a rule of the following kind, whereqosOK2
or qosOK3() are defined usinglocalResOK() and
comResOK().
qoSOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Z)

← localResOK(N1, L1, Re1, P r1, Z1),

localResOK(N2, L2, Re2, P r2, Z2),

comResOK3(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Zc),
Z1, Z2, Zc ∈ Z.

6

This rule says that the QoS requirements are satisfied
iff the local computing requirements and communication
requirements are satisfied. A similar definition can be
given forqosOK3().

5 Semantics

This section describes models of our module composi-
tion syntax and their policies. Taken as a constraint logic
program, our syntax has a three valued Kripke-Kleene
model [36, 22] where every predicate instance evaluates
to one of three truth valuestrue, falseor undefined. We
will shortly show that every query (a request) will evalu-
ate to eithertrueor false, and therefore has only two truth
values - ensuring that every module composition request
is either granted or denied. Because we allow nested
negative predicates, we need to interpretnegation. We
can either use negation as failure orconstructivenegation
[10, 11] as proposed by Fages [20, 19]. This is because
the third alternative namely using constructive negation
as proposed by Stuckey [49, 50] requires that the con-
straint domain beadmissibly closed. But Dovier shows
that set constraints as we use them are not admissibly
closed, and proposes an alternative formulation to handle
nested negations [18]. Conversely, at the cost of requir-
ing some uniformity in computing negated subgoals of
a computation tree, Fages’s formulation does not require
the constraint domain to be admissible closed [20, 19].
Formalities follow. We first repeat some standard defini-
tions as they appear in [23] in order to clarify notation.

Definition 1 (P ∗, TP and ΦP ↑ operators) Suppose
that P is a logic program, and letP ∗ be all ground in-
stances of atoms inP . We takeA← asA and any ground
atomA not in the head of any rule asA←false. We
now define two and three valued truth lattices to be
2 = 〈{T, F}, <2〉 and 3 = 〈{T, F,⊥}, <3〉 respec-
tively, whereT , F and ⊥ are taken to meantrue,
false and unknown truth values. Partial order-
ings <2 and <3 satisfy the conditionsF <2 T and
⊥ <3 T,⊥ <3 F respectively. A mappingV from
instantiated clauses ofP to 2 and 3 is said to be
respectively a two-valued or a three-valued valuation
of P . Given a valuationV , the two and three valued
immediate consequence operatorsTP (V) and ΦP (V)
are defined as follows.
TP(V) : TP (V) = W is defined as:

• W (H) = T if there is a ground clause
H←B1, . . . , Bn in P ∗ such thatV (Bi) = T for
i ≤ n.

• W (H) = F otherwise.

ΦP(V) : ΦP (V) = W is defined as:

• W (H) = T if there is a ground clause
H←B1, . . . , Bn in P ∗ such thatV (Bi) = T for
i ≤ n.

• W (H) = F if for every ground clause
H←B1, . . . , Bn in P ∗ such thatV (Bi) = F for
somei ≤ n.

• W (H) = ⊥ otherwise.

In evaluatingΦ, negation is interpreted as¬T =
F,¬F = T and¬⊥ = ⊥. Now we define bottom-up
semantic operators for bothTP andΦP , whereΨ stand
for either of them in the following.

• Ψ0 ↑ (P) = Vfalse, whereVfalse assignsF (false)
to all instantiated atom.

• Ψα+1 ↑ (P) = Ψ(Ψα ↑ (P)) for every successor
ordinal α.

• Ψα ↑ (P) =
∨

β<α(Ψβ ↑ (P)) for every limit ordi-
nal α.

For Horn clauses (i.e. those without negative non-
constraint predicates in the body)T (P) has a least fixed
point, that is considered the model theoretic semantics of
P [23] that isTω(P). But for three-valued semantics,
the least fixed point may not be obtained at ordinalω.
But following standard practice we takeΦω(P) as the
meaning(i.e. semantics) of our combined rule base (i.e.
composition rules + QoP policies + QoS Policies)P as
formalized in definition 2.

Definition 2 (bottom-up semantics) Let P be a policy
andΦ be the three-valued immediate consequence oper-
ator stated in definition 1. Then we say that

⋃
i∈ω Φi(P)

is the model ofP .

Definition 2 says that we obtain a model ofP by eval-
uating theΦ operatorω many times. As promised, we
now show that

⋃
i∈ω Φi(P) only takes two truth values.

In order to do so, we consider a version of the stan-
dard operational semantics for constraint logic programs.
Thereafter by defining arank for a formula so that the
rank decreases as one proceeds from the root towards the
leaves of a top down computation tree, we show that ev-
ery computation terminates. The property we use here is
the well-foundedness of the membership predicate built
into some of our predicates (namely, those that would
interleave recursion and negation). In order to do so, we
now repeat (a version of) operational semantics proposed
for constraint logic programs [33, 35].

7

Definition 3 (operational semantics)A state is a pair
(A, C) of multisets of predicatesA and constraintsC.
LetP be an ABAC policy and(A, C) (A′, C′) are states.
We say that:

• (A∪{p(~s)}, C)→1 (A∪B, C∪C”∪{~s = ~t}) is a
one-step derivation providedp(~t)←B, C” is a rule
in P andp(~s)←B, C” is a renamed apart instance
of p(~s)←B, C”.

• We say that(A, C) fails if A 6= ∅ and there is no
predicatep ∈ A wherep(~t)←B, C” is a rule inP .

• We say that(A, C) is successful if(A, C) →∗

(∅, C′) for some constraint setC′ satisfiable by an
assignmentσ of variables to values, where→∗ is
the reflexive transitive closure of→1.

• A query(A, C) is said to flounder if it neither suc-
cessful nor fails.

The third clause of definition 3 usually reads as(A, C)
is said to be successful if(A, C) →∗ (∅, C′) for some
consistent constraint setC′. But Dovier et al. shows that
in the computable set theory we use, a set of constraints
C′ is consistent iff it is satisfiable by some assignment
of variables to values [15, 16, 17]. Coincidentally, the
operational semantics given by definition 3 and the fixed
point semantics given by definition 2 coincide [33, 35].
We now proceed to show that our policies do not floun-
der.

Definition 4 (rank) We say that the rank of a well-
founded set is the maximum nesting of braces in it, for-
mally definedrank(s) to be max{1+rank(u), rank(v)}
whens is of the form{u | v} and as0 otherwise. We say
that the rank of an instance of a reserved predicate is the
rank of its last variable, and the rank of a rule instance
is the rank of its head predicate.

SupposeA is a finite multiset of predicates, and
{a1, . . . , an} lists elements ofA in the decreasing or-
der of their ranks. That is, they satisfy the condition
that i > j → R(ai) ≥ R(aj), whereR(aj) is the
rank of aj . Supposem is the highest rank inA. That
is, m =max{R(a) : a ∈ A}, and let C(A, i) =|
{R(aj) : R(aj) = i} | for every i ≤ m. That is,
C(A, i) is the number of predicates with ranki. Then
defineR(A), the rank of the multisetA as the vector
(C(A, m), . . . , C(A, 0)). We order multiset ranks (that
is (C(A, m), . . . , C(A, 0))) lexicographically.

Definition 4 defines the ranks for reserved predicates,
rules and multisets of predicates. Because the multiset
ranks are finite sequences of non-negative integers. We
use the fact that finite sequences of non-negative integers

are well-ordered in Lemma 1 to show that any applica-
tion of any of our rules reduces the rank of therule state,
and therefore must terminate finitely.

Lemma 1 (miscellaneous properties of ranks)
Suppose h←B is a derivation rule where the
last attribute is fully instantiated (i.e. variable
free). Then R(h) > R(b) for any reserved
predicate b in the body B. Furthermore, if
(A ∪ {p(~s)}, C) →1 (A ∪ B, C ∪ C” ∪ {~s = ~t})
is a one-step derivation wherep(~t)←B, C” is a rule
in P and p(~s)←B, C” is a named apart instance of
p(~s)←B, C”. ThenR(A ∪ {p(~s)}) > R((A ∪B).

Proof:
Case 1: Predicates of the Access Control Sub lan-
guage

To prove the first claim, according to policy defi-
nition, the reserved predicates arecando cando*,
cannotdo, cannotdo* anddo. We consider each
of them now.
cando, cannotdo: cando(−,−,−, . . . , {∅})←B

whereB consists of non-reserved predicates or is empty.
This is the only allowed form ofcando in a rule head.
Thus, R(cando(−,−,−, . . . , {∅})) = 1 and R(b) = 0
for any predicateb in B. A similar argument holds for
cannotdo.
cando* andcannotdo*: According to the third rule
in the policy definition, ifcando ∗ (−,−,−, . . . , Z) is in
the body andcando ∗ (−,−,−, . . . , Z ′) is in the body,
then Z = {Z ′|U} for some setU . Hence by defini-
tion 4,R(cando ∗ (−,−,−, . . . , Z)) ≥ 1 + R(cando ∗
(−,−,−, Z ′)).
do: The same argument applies for rules with a
cando ∗ (−,−, . . . , Z) head. The only rule with a
do(−,−, . . . , Z) head isdo(X, Y,−, {Z}) ← cando ∗
(−,−, . . . , Z1),¬cannotdo ∗ (−,−, . . . , Z2). Thus,
R(do(−,−, . . . , {Z})) = 1 + max{R(cando ∗
(−,−, . . . , Z1)), R(cannotdo ∗ (−,−, . . . , Z2))}.
Case 2: Predicates of the Flow Control Sub Language

This case is similar to that of Case 1, due to the simi-
larity of the rules at the same starts.
Case 3: Predicates of the QoS Policy Sub Language

This case is similar to that of Case 1, due to the simi-
larity of the rules at the same starts.
Case 4: Predicates for Composition

For predicatesmodule, cModule, typeOK2,
typeOK3, structOK2 and structOK3 are base
predicates, where the last attribute is∅. Hence they have
Rank 0, and therefore do not flounder.

For the predicatecomposable2, the prescribed rule
of usage is as follows.
composable2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Z)←
structOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Zs),
qopOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Zp),

8

qosOK2(N1, L1, Re1, P r1, N2, L2, Re2, P r2, Zq),
Zs, Zp, Zq ∈ Z.

Hence the rank of any instance ofcomposable2
is max {structOK2, qopOK2, qosOK2}+1. A
similar argument holds forcomposable3.

Now we use the first claim to justify the second. Sup-
pose that(A ∪ {p(~s)}, C) →1 (A ∪ B, C ∪ C” ∪
{~s = ~t}) is a one-step derivation using the ABAC rule
p(~t)←B, C” is a rule inP andp(~s)←B, C” is a fresh
instance ofp(~s)←B, C”. To prove thatR(A∪{p(~s)}) >

R(A ∪ B), supposeR(A ∪ {p(~s)}) = (km, . . . , k0),
R(P) = t < m, and R(B) = (tu, . . . , t0) where
u < t. Then R(A ∪ B) = (km, . . . , kt+1, kt −
1, kt, . . . , ki + ti, . . . , k0). In the lexicographical order-
ing, (km, . . . , k0) > (km, . . . , kt+1, kt − 1, kt, . . . , ki +
ti, . . . , k0), implyingR(A ∪ {p(~s)}) > R(A ∪B).

We now use Lemma 1 to show that composition
queries terminate.

Theorem 1 (finite termination of queries) Every
query (A, C) either fails or succeeds, whereA is
a reserved predicate with a fully instantiated first
attribute.

Proof:
Suppose(A, C) →1 (A0, C0) →1 (A1, C1), . . . is

an infinite sequence of one-step reductions. Then by
lemma 1,R(A, C) > R(A0, C0) > . . . is an infinite de-
scending sequence, contradicting the well-foundedness
of the rank function. This is a contradiction, as the lexi-
cographical ordering on integers is well-founded.As
a corollary, we now obtain that any query always gives a
yesor noanswer, implying that following theorem which
says that all three valued models have only two truth val-
uestrue andfalse.

Corollary 1 (three valued model has two truth values)
Every three valued model of a composition policy as-
signs eitherT or F for reserved predicates where the
first attribute is instantiated. In that case, bottom-up
semantics and the well-founded constructions assigns
the same truth values to the same predicate instances
and have the same answer sets.

Proof: See [7].
Corollary 1 show that every composition request is ei-

ther honored or rejected. But notice that our model is not
a fixed point of theΦ operator , as it is well known that
the least fixed point of theΦ operator is notω - mean-
ing that the fixed point ofΦ is not attained in a countable
number of iteration.Φ [24, 19]. ([24] gives a simple
counter example)

6 An Example

This section shows an example application of our frame-
work to a conference call manager. As shown in the
schematic of Figure 6, thetalking phaseof the tele-
conferencing module is constructed from three exist-
ing modules, amanager located at thepentagon,
a land phone located atftMeade and amobile
phone located iniraq . Theprovidesinterfaces of the
manager is used by the conferees and therequiresin-
terfaces are connected to theprovidesinterfaces of the
land phone andmobile phone modules. There-
quires interfaces of these modules are used by the con-
ferees at their respective sites.

Manager

Land

Mobile

talk

listen

x, y

x, y

talk

talk

listen

listen

t
o

A
,
B

f
r
o
m

t
o

C
,
D

f
r
o
m

Figure 2: The Composed Teleconferencing Module

The call manager has four interfaces: two dedicated
per conferee where the first interface is used to send
multimedia streams consisting of some combination of
audio, video and textual data and the second interface
is used to receive the same data from the other two
conferees. Hence we model the conference manager
as module(manager, pentagon, R̂eqM, ̂ProvM)

where ̂ReqM is {(toLand,A,B),(fromLand,A,B),
(toMobile,C,D),(fromMobile,C,D)} and ̂ProvM is
{(talkM,X,Y),(listenM,X,Y)}. The manager module
is specified using the following rule:
cModule3(manager, L, {(toLand, A, B),
(fromLand, A, B), (toMobile, C, D), {fomMobile,

C, D}, {(talkM, X, Y), (listenM, X, Y)}, ∅)
← {des} ⊆ X ⊆ {des, 3des, aes},
{audio} ⊆ Y ⊆ {audio, video, text},
{3des} ⊆ A ⊆ {des, 3des, aes},
{des} ⊆ C{des, 3des, aes}, {audio, text} ⊆ B,

D ⊆ {audio, video, text}, X = A ∪ C, Y = B ∪D.

The head predicatecModule3() of the above rule
says that the modulemanager, located atL, has two
providesinterfacestalkM andlistenM, has shared
security and QoS parameter setsX and Y . The
head predicate also says that this module has fourre-
quires interfaces: toLand, fromLand, toMobile
andfromMobile, where the first two are to be con-
nected to a land line with respective QoP and QoS pa-
rameter setsA andB. The latter two interfaces can be

9

connected to a mobile phone with QoP and QoS pa-
rameter setsC and D. The design constraints of the
manager module appears in the body of the rule, and
are as follows: The QoS parameters of theprovidesin-
terfacestalkM andlistenM must be the same (be-
cause they are given as (talkM,X,Y) and (listenM,X,Y))
and containdes and is contained indes,3des,aes,
specified as{des} ⊆ X ⊆ {des, 3des, aes} in the fourth
line of the rule. Similarly, QoS parameters must con-
tainaudio and must be chosen fromaudio, video
andtext, stated in the sixth line as{audio} ⊆ Y ⊆
{audio, video, text}. Similarly, the land line must pro-
vide at least3des encryption and could includedes or
aes, as stated in the seventh line as{3des} ⊆ A ⊆
{des, 3des, aes}. Similarly, the land line must provide at
leastaudio andtext and may includevideo, stated
as{audio, text} ⊆ B, E ⊆ {audio, video, text} in the
eighth line. The last line of the rule,X = A ∪ C, Y =
B ∪D says that theprovidesinterface of themanager
module must match all the security and QoS options
available to itsrequires interfaces.

The Land Conferee’s module is modled as
module(land, ftMeade, ReqLand, ProvLand, ∅)

where ̂ReqLand is {(talkLand,A,B),{listenLand,A,B})
and ̂ProvLand is {(toLand,A,B),(fromLand,A,B)}
defined using the following rule.
module(land, L, {(talkLand, A, B), (listenLand, A,B)}

{(toLand, A, B), (fromLand, A, B}, ∅ ←

{des} ⊆ A ⊆ {des, 3des, aes}, {audio} ⊆ B ⊆

{audio, video, text}

The rule above shows that theland conference mod-
ule, located atL, consists of twoprovides interfaces
toLand and fromLand and two requires interfaces
talkLand andlistenLand. As the rule says, the
security and QoS parameters, respectively given by set
variablesA andB are configurable subjected to the con-
straints{des} ⊆ C ⊆ {des, 3des, aes} and{audio} ⊆
D ⊆ {audio, video, text} in the second and third lines
of the rule.

The Mobile Conferee’s module is modeled as
module(mobile, iraq, ̂ReqMobile, ̂ProvMobile, ∅)

where ̂ProvMobile is {(toMobile,C,D), (fromMo-
bile,C,D)} and ̂ReqMobile is {(talkMobile,C,D),
(listenMobile,C,D)} defined using the following rule.

module(mobile, L, {(toMobile, C, D), (fromMobile,

C, D)}{(talkMobile, C, D), (listenMobile, C, D)}, ∅) ←

{des} ⊆ C ⊆ {des, 3des, aes}{audio} ⊆ D ⊆

{audio, text}.

Above rule says that themobile component
at location L consists of two provides interfaces
toMobile and fromMobile and two requires in-
terfaces talkMobile and listenMobile, with
QoP and QoS given by set variablesC and D are

configurable subjected to the constraints{des} ⊆
C ⊆ {des, 3des, aes} and {audio} ⊆ D ⊆
{audio, video, text} in the second and third lines of the
rule. Now we specify the composition.
cModule2(telecon, pentagon, ̂ReTcon, ̂PrTCon, Z)

← composable3((manager,pentagon, R̂eqM, ̂ProvM),

(land, ftMeade, ̂ReqLand, ̂ProvLand),

(mobile, iraq, ̂ReqMobile, ̂ProvMobile), ∅),
̂PrTcon = P̂ rM, ̂ReTCon = ̂ReqLand ∪ ̂ReqMobile

Above rule with acModule2() head says that location
pentagon requires a moduletelecon that provides

̂PrT con and requires capabilities ̂ReTcon. The right
hand side of the rule says that theteleconmodule that
is constructed from three modulesmanager, land
andmobile, located at thepentagon, ftMeade and
iraq respectively. Therequiredandprovidedinterfaces
of the composed moduletelecon can now be con-
structed from the last two lines of the rule above as fol-
lows:

̂PrTcon = ̂ProvM

= {(talkM, X, Y), (listenM, X, Y)},

̂ReTcon = ̂ReqLand ∪ ̂ReqMobile

= {(talkLand, A, B), (listenLand, A, B),

(talkMobile, C, D), (listenMobile, C, D)})

Subjected to the following constraints:

{des} ⊆ X, A, C ⊆ {des, 3des, aes}

{audio} ⊆ Y, B, D ⊆ {audio, video, text}

X = A ∪ C

Y = B ∪D

We now explain how the composition is written.
Firstly, P̂ rM says that the composed module name
telecon at thepentagon must provide the capabil-
ities listed in ̂PrT con, requiring capabilities ̂ReTcon.
Notice that P̂ rM is a set with two ordered triples
(talkM, X, Y) and(listenM, X, Y), which says that it
may provide the ability to translateaudio with pos-
sibly more QoS capabilities thanaudio and possi-
bly more QoP capabilities thandes. The specifica-
tion says that the conference manager’s site must have
all QoP and QoS related services available for all mo-
bile and land phone conferees. Notice that the secu-
rity and QoS capabilities are specified using set vari-
ables, such asX, Y etc., that may be instantiated by the
caller of the rule, and resolved by the constraint solver
CLP(Set) during the composition process. Notice also
thatcomposable3() is specified using the structural
rulestruct3() as defined in Section 2.2.

10

We now show the QoP and QoS policies. In order to do
so, we specify global cross-domain flow control policies
that apply to the communication links spanning across
all three sites and access control policies that regulate
the accesses to the resources at each site. The facts about
the modules, their users and the roles played by these
users are stored at different locations as stated in Ta-
ble 1. The table has site specific information for the four
sites: the conferencemanager’s site pentagon, the
land phone’s siteftMeade and themobile phone’s
siteiraq. The square at the right hand bottom corner of
Table 1 stores information about the teleconference mod-
ule. There, we have stored multiple owners, a new role
nameteleconferencing and a non-physical loca-
tion global.

We now state the flow control policies. The first rule
places some constraints on information that can flow
from the two modulesland (telephone) andmobile
(telephone) to the (teleconference)manager module
simultaneously. They are (1) the manager’s organization
must be either thepentagon or jtChiefs, (2) the
other two modules belongs either ofusArmy, usNavy
or the usAF, the manager of the teleconference must
play the roles of acommOfficer (communications
officer) or a commander. It further stipulates that
the users of other modules must play the roles of
commOfficer, recon (reconnaissance) orsignal
(officer) and prohibits themobile module being
located inchina.
canF low3(Sub1, Role1, Org1, manager,L1, Req1,,
Prov1, Sub2, Role2, Org2, land, L2, Req2, P rov2,
Sub3, Role3, Org3, mobile, L3, Req3, P rov3, ∅)
← Org1 ∈ {pentagon, jtChiefs}, Org2, Org3 ∈
{usArmy,usNavy, usAF}, L2 6= china,

Role1 ∈ {commOfficer, commander},
Role2, Role3 ∈ {commOficer, recon, signal}.

canF low3 ∗ (Sub1, Role1, Org1, N1, L1, Req1, P rov1,

Sub2, Role2, Org2, N2, L2, Req2, P rov2, Sub3, Role3,

Org3N3, L3, Req3, P rov3, Z)←
canF low3(Sub1, Role1, Org1, N1, L1, Req1, P rov1,

Sub2, Role2, Org2, N2, L2, Req2, P rov2, Sub3, Role3,

Org3, N3, L3, Req3, P rov3, Z1), Z1 ∈ Z

safeF low3(Sub1, Role1, Org1, N1, L1, Req1, P rov1,

Sub2, Role2, Org2, N2, L2, Req2, P rov2,

Sub3, Role3, Org3N3, L3, Req3, P rov3, Z)←
canF low3(Sub1, Role1, Org1, N1, L1, Req1, P rov1,

Sub2, Role2, Org2, N2, L2, Req2, P rov2,

Sub3, Role3, Org3, N3, L3, Req3, P rov3, Z1), Z1 ∈ Z

The last two rules are required to complete the policy
specification, wherecanFlow3*() allowscanFlow3() to
be defined recursively andsafeFlow3() defines the final
decision after any potential conflict resolution about flows.
The important issue here is thatsafeFlow3() and all the
predicates used to definesafeFlow3() must be globally
available, including the geographical locations, users and the
roles of the participants of the teleconference, which may

expose location specific information inadvertently. We now
specify the access control polices at the mobile phone, and
omit others for the sake of brevity.

candomobile(S, R, Org,mobile, L, {(talkMobile, A, B),
(listenMobile, C, D)}, Z)← owner(S, mobile, ∅), ∅ ∈ Z.

candomobile(S, R, Org,mobile, L, {(toMobile, A,B),
(fromMobile, C, D)}, Z)← des ∈ C, des ∈ A,

role(S,R, ∅), owner(mobile, S, ∅),
R ∈ {recon, commander},
L 6∈ {china, Afghanistan}, ∅ ∈ Z.

cannotdomobile(S, R, Org, mobile, L, {(toMobile, A,B),
(fromMobile, C, D)}, ∅)← video ∈ B ∪D,

L ∈ {china, Afghanistan}.
cando ∗mobile (S, R, Org, mobile, L, Pr,Re, Z) ←
candomobile(S, R, Org,mobile, L, Pr,Re, Z1)
Z1 ∈ Z.

cannotdo ∗mobile (S, R, Org, mobile, L, Pr,Re, Z) ←
cannotdomobile(S, R, Org, mobileL, Pr,Re, ∅),
∅ ∈ Z.

domobile(S, R,Org, mobile, L, Pr,Re,Z) ←
cando ∗mobile (S, R, Org, mobile, L, Pr, Re,Z+),
¬cannotdo ∗mobile (S, R, Org,mobile, L, Pr,Re, Z

−
)

Z+, Z
−
∈ Z.

The access control policy at themobile module says that
the owner of that device may talk and listen to the device
in the first rule. The second rule says that the device may
connect to a teleconferencemanager through two interfaces
toMobile andfromMobile provided that both streams are
able to usedes encryption, the owner of the mobile device
is using it in playing the role of a reconnaissance officer or a
commander, and the device is not being operated fromchina
or Afghanistan. The third rule of the policy explicitly pro-
hibits usingvideo from china or Afghanistan. Fourth
and fifth rules are there to resolve authorization conflicts and
to ensure that every request is answered affirmatively or nega-
tively (i.e. no queries flounder). Similarly, the other two mod-
ulesmanager andland telephone can have their own access
control policies.

Following the stratification stated in Section 4, we first state
service dependencies as rules. They are stated in Table 2 for
any site that has a (mobile or land line) telephone. As stated
in the table, audio and video individually requirecpuau, cpuv

units of CPU resources andbufau, bufv units of buffer space
in order to maintain thecontinuityof the media streams. But
if audio andvideo are present together, they need an ex-
tra cpulip amount of CPU and2.(bufau + bufv) buffer (for
double-buffering) in order to maintain lip-synchronization at
any local site (not for communication). Consequently, the rules
of strata 1 and 2 are as follows:
needs({audio, video}, {lipSync}, ∅)←
needs(X,X, , ∅)←
needs ∗ (X, Y, Z)← needs(X, Y, Z1).
needs ∗ (X, Y ∪ Z, Z1) ← needs ∗ (X, Z, Z2), needs ∗
(Z, Y, Z3), Z1, Z2 ∈ Z3.

11

At the Manager’s site: Pentagon At the Land Phone’s site: Ft. Mead

owner(ltCook, manager, ∅) ←

playRole(ltCook, commOfficer, ∅) ←

organization(ltCook, pentagon, ∅) ←

owner(cptJones, land, ∅) ←

playRole(cptJones, signal, ∅) ←

organization(cptJones, usNavy, ∅) ←

At the Mobile Phone’s Site: Iraq At the Teleconference’s “site”- to be determined

owner(sgtJane, mobile, ∅) ←

playRole(sgtJane, reconn, ∅) ←

organization(sgtJane, usArmy, ∅) ←

owner({ltCook, cptJones, sgtJane}, telecon, ∅) ←

playRole(participants, {conferencing}, ∅) ←

organization(participants, global, ∅) ←

Table 1: Facts Stored in Local Access Control Policy Bases

Service Needed Services Resource Requirements Multi-Set Representation

audio auContinuity cpua, bufa {| cpua, bufa |}
video vContinutiy cpuv, bufv {| cpuv, bufv |}
text cput, buft {| cput, buft |}

{audio,video} lipSync cpulip, 2.(bufau + bufv) {| cpulip, cpua, cpua, bufa, bufa,

cpuv, bufv, cpuv, bufv, |}

Table 2: Service Dependencies of the Teleconferencing Application at Local sites

allNeeds(X,Y, Z)← needs ∗ (X, Y, Z1), Z1 ∈ Z.

The first rule state that {audio,video} needs
{lipSync}. The next two rules say thatneeds* is
the transitive closure ofneeds, and the last rule collects all
dependencies ofX. The given set of rules imply the conclusion
allNeeds({audio,video},{audio,video,lipSync}).
We now state the rules for computing all resources required at
a local site.
localRes2 ∗ (N1, L1, {(, , {X | C}) | B}, Re1, Res,

Z)← allNeeds(X,Y, Z1), resourceMap(Y,Res, ∅),
localRes2 ∗ (N1, L1, {(, , C) | B}, Re1, Res,Z2).
localRes2 ∗ (N1, L1, {(, , ∅) | B}, Re1, Res)
← localRes ∗ (N1, L1, B, Re1, Res,Z3)
Z1, Z2, Z3∅ ∈ Z.

allLocalRes(N1, L1, Re1, P r1, Res,Z)←
localRes ∗ (N1, L1, Re1, P r1, Res,Z1), Z1 ∈ Z.

Two rules above show that the CPU and buffer require-
ments for resources{(, {X|C}|B} in the provides inter-
face is recursively computed using the resources required to
offer all the services needed for executingX and adding
them to the buffer requirement of{(, , C), B}. The
required resource lookup table is given by the predicate
resourceMap(services, resources). Similar recursive rules
can be written for therequires interface and added to the
total resources required for theprovides interfaces. The
last rule computes all the required resources in the predicate
allLocalRes(). We now model the resource allocation
policy for the communication part of the teleconference as fol-
lows:

localResOK(N1, L1, Re1, P r1, Res,Z)←
allLocalRes(N1, L1, Re1, P r1, Res,Z1),
localLimit(L1, MaxRes, ∅),
Res ⊑MaxRes, ∅, Z1 ∈ Z.

The simple rule above says that if the CPU and Buffer space
is below that of the maximum available at the local siteL1,
then the local QoS policy permits the module to be invoked.

7 Related Work

The subject matter addressed in this paper, gluing software
modules to construct new modules and applications is an area
that has received much attention in the last two decades. It
falls within the areas ofcomponent-based software engineer-
ing [30], architecture description languages[13] and to some
extent,aspect-oriented software design[21]. It belongs in the
latter because of our concentration in the aspects of QoP and
QoS.

The comprehensive survey [13] summarizes the most promi-
nent architecture description languages (ADLs). According
to [13], there are about five main ADLs, Rapide [37], Uni-
Con [1], ArTek [29], Wright [3], Meta-H [53] and Darwin [40],
of which we review and compare with some. More recently, an
XML-based ADL has been introduced by Dashofy et al. [14].
Broy et al. [9] also addresses the central question ofwhat char-
acterizes a software component?The authors argue that a
component should (1) encapsulate data (hence hides informa-
tion representation and computational algorithms), (2) imple-
mentable in most programming languages, (3) can be hierar-

12

chically nested, (4) has clearly defined interfaces and (5) can
be incorporated in a framework. The framework we propose
have all these properties.

Beugnard et al. [8] have identified the following four levels
of contractsthat can be specified in components and their inter-
connections: (1) Syntactic contracts to specify data type com-
patibility, (2) Behavioral contracts to specify pre-conditions,
post-conditions and invariants, (3) Synchronization contracts
to specify dependency constraints between information ex-
changed within a concurrent context and (4) Quality of Service
contracts to specify quantitative properties like maximumre-
sponse time etc. Our paper extends this list by adding a fifth
level of securityand separate policy from design by having a
modular design framework that taken multiple policies, as im-
plied by the plethora of emerging policy research [48, 52].

One of the most cited publications in the area of mod-
ule composition is Allen and Garlands’sA Formal Basis for
Architectural Connection[4] provides an operational seman-
tics for theWright architecture description language. They
say [4] [3] that two modules connecting to each other must ex-
press arole and aport for that purpose. Informally, therole
describes the purpose of the connection and exposes its inter-
face name so that it can be used by theport which formally
specify the allowable interactions. They are connected using
a connectionthat specify the interaction protocol. The ports
and roles are formalized usingCommunicating Sequential Pro-
cesses (CSP)[31]. The consistency of the specification of two
connecting ports with that of their end connectors is addressed
as a refinement problem in thefailure divergence modelof CSP
and is checkable by the FDR tool [25].

To the extent we know, two other publications have elabo-
rated in the behavioral specification of ports and their connec-
tions. The first is the ADLDarwin [40] where port behaviors
are specified usingπ-Calculus [41, 45]. The advantage of this
work over [4] is its ability to reason about making connections
to mobile modules.

Moschoyiannis [42] has formalized component composition
using a set-theoretic framework where the (requires and pro-
vides) interfaces are given as a collection of methods and the
synchronous interactions between the two parties are specified
as an abstract partial ordering. The consistency of a connection
between two interfaces is verified by checking the consistency
of the partial orders expressed by the two interfaces. In a pre-
vious work, Shields et al. [46] formalized port behaviors asau-
tomatons. Consequently, the former becomes a more abstract
versions of the latter. Moschoyiannis [42] continues to advance
set theory and automata based formulation of module composi-
tion. Our rule-based formulation of module composition using
computable set constraints [15, 16, 17] policies were inspired
by his set-based formalizations.

There have also been attempts to useλ-calculus [6] based
formulations of module composition. Anancona and Zucca [5]
have developed thecalculus for module systems (CMS)by
mixing λ-calculus and theobject calculusof Abadi and
Cardelli [2]. In this calculus, a module is chracterized by the
values it imports (like requires), exports (like provides)and has
as internal variables. Although the definition of module linking
is somewhat similar to that of [42], this work defines more op-
erators on modules: taking thesum, reducing modules, renam-

ing, assigning modules to module variables, freezing values of
variables etc. The authors show that the (module composition)
terms in their module calculus has a normal form. In an anal-
ogous attempt Lumpe [38] describesλ-forms, aλ-calculus for
forms with form variables, bindings of modules to module vari-
ables, extensions and restrictions of modules, de-refencing and
assigning context for modules. Although this work addresses
the syntactic contactsin the sense described by Beaugnard et
al. [8], they also have a normal form forλ-forms expressions.
Goguen et al. [28] also develops an Intuitions [27] based calcu-
lus for module composition. Formulated using Category The-
ory [39], they use aggregation, re-naming, enrichment (i.e. add
functionality to a module) information hiding, and parametriza-
tion of modules as operators.

Two papers, Gensler et al. [26] and Kim et al. [34] de-
scribe rule-based formulations of module compositions. [26]
describes a module with respect to its input and output param-
eters, public interfaces and mandatory properties. The modeler
then expresses these properties using custom-made predicates,
and specifies Prolog rules to make inferences about properties
of modules. But these rules do not provide a general framework
to specify policies on propositionally, QoS and security. [34]
describes roles and rules about modules in anadaptable com-
puting model, inspired by software engineering concerns. The
rules sets they have described covers business concerns such as
subscriptions, contracts and sales of customer bases etc. Al-
though we were inspired by these attempts, we recognized the
need to expand upon their work to develop a comprehensive
rule-based framework that specifies policies for module com-
position, QoP and QoS.

JBCDL [44] introduces theJade Bird Component Descrip-
tion Language, that is a part of a component description lan-
guage developed for theJade Bird Component Librarythat al-
lows hierarchical composition of classes of libraries. This sys-
tem provides templates to describe software modules consisting
of parameters, provided and required functions, connections,
class members, their implementation code and code dependen-
cies. Although implementable, this work does not explicitly
cover QoS and security either. Secondly, parameterized tem-
plates made for software modules are difficult to use to express
compositional policies.

[32] makes the important observation that exceptions could
arise (due to faults) when linked software modules are executed
and proposes to specify exception handlers (using an appropri-
ate fault model) to address them during the design phase. We
extend this suggestion to incorporate security policies tohandle
misuses that may arise due to mal-acts (using some mal-actor
model).

Templeton and Levitt [51] proposes an abstract syntax to
specify attacks using arequires-providessyntax. This work
has inspired other work that specify security vulnerabilities us-
ing pre-conditions and post-conditions. Sidiroglou et al.[47]
proposes to construct mediated overlay networks as a compass-
able service. They argue that many security vulnerabilities can
be avoided by using the appropriate security services. Further-
more Makio [43] proposes arequires-providesbased language
to specify negotiation structures that can model complex mar-
ket place negotiations. Their models specify synchronization
details of the ports to specify acceptable business negotiation

13

strategies.

8 Conclusions

We have constructed a CLP(Set) based policy language that is
capable of specifying module composition based on their ex-
posed requires-provides interfaces. As shown, our language is
able to specify and enforce policies related to multipleaspects
of the composition. We have shown how QoP and QoS can be
used as sample aspects, and a modular way to decompose and
specify policies that govern the composition into sub-aspects
within an aspect. Towards this end, we have shown how access
and flow control policies can be specified as sub components of
security policies.

We have also provided an operational semantics for the en-
tire policy language and shown that our policies are flounder-
free. That is the rule execution engine will always return anyes
andno response to every composition request.

References

[1] The UniCon Architecture Description Language.

[2] Martin Abadi and Luca Cardelli. A Theory of Ob-
jects. Monographs in Computer Science, Springer-
Verlag, 1996.

[3] Robert Allen and David Garlan. Beyond definition/use:
Architectural interconnection. InProceedings of the
Workshop on Interface Definition Languages, Portland,
Oregon, 1994.

[4] Robert Allen and David Garlan. A formal basis for ar-
chitectural connection.ACM Transactions on Software
Engineering and Methodology, 6(3):213–249, July 1997.

[5] Davide Anancona and Elena Zucca. A calculus of module
systems.Journal of Functional Programming, 12(2):91–
132, 2002.

[6] Henk P. Barendrecht.The Lambda Calculus – Its Syntax
and Semantics. North-Holland, rev. edn, 1984.

[7] Steve Barker and Peter J. Stuckey. Flexible access control
policy specification with constraint logic programming.
ACM Transactions on Information and System Security,
2004. to appear.

[8] Antoine Beaugnard, Jean-Marc Jezequel, Noel Plouzeau,
and Damian Watkins. Making components contract
aware.IEEE Computer, 32(7):38–45, 1999.

[9] Mansfred Broy, Anton Dieme, Jurgen Henn, Kai
Koskimies, Frantisek Plasil, Gustav Pomberger, Wolf-
gang Pree, Michael Stal, and Clemnts Szyperski. What
characterizes a (software) component.Software-Concepts
and Tools, 19:49–56, 1998.

[10] David Chan. Constructive negation based on the com-
pleted databases. In R. A. Kowalski and K. A. Bowen, ed-
itors, Proc. International Conference on Logic Program-
ming (ICLP), pages 111–125. The MIT Press, 1988.

[11] David Chan. An extension of constructive negation and
its application in coroutining. In E. Lusk and R. Over-
beek, editors,Proc. North-American Conference on Logic
Programming, pages 477–489. The MIT Press, 1989.

[12] Shiping Chen, Duminda Wijesekera, and Sushil Jajodia.
Flexflow: A flexible flow control policy specification
framework. InDBSec, pages 358–371, 2003.

[13] Paul Clements. A survey of architecture description lan-
guage. InEighth International Workshop on Software
Specification and Design, pages 16–28, 1996.

[14] Eric M. Dashofy, Andre van der Hoek, and Richard Tay-
lor. A highly-extensioble, xml-based architecture descrip-
tion language. InProceedings of the IEEE/IFIP Work-
ing Conference on Software Architecture, pages 103–112,
2001.

[15] Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gi-
anfranco Rossi. Sets and constraint logic programming.
ACM Transactions of Programming Languages and Sys-
tems, 22(5):861–931, 2000.

[16] Agostino Dovier, Carla Piazza, and Gianfranco Rossi. A
uniform approach to constraint-solving for lists, multi-
sets, compact lists, and sets. Technical Report Quaderno
235, Department of Mathematics, University of Parma,
Italy, 2000.

[17] Agostino Dovier, Alberto Policriti, and Gianfranco Rossi.
A uniform axiomatic view of lists, multisets, and sets, and
the relevant unification algorithms.Fundamenta Infor-
maticae, 36(2/3):201–235, 1998.

[18] Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi.
Constructive negation and constraint logic programming
with sets.New Generation Comput, 19(3):209–256, May
2001.

[19] Francois Fages. Constructive negation by pruning.Jour-
nal of Logic Programming, 32(2):85–118, 1997.

[20] Francois Fages and Roberta Gori. A hierarchy of seman-
tics for normal constraint logic programs. InAlgebraic
and Logic Programming, pages 77–91, 1996.

[21] Robert E. Filman, Tzilla Elrad, Siobhan Clark, and
Mehmet Aksit. Aspect-oriented Software Development.
Addison-Wesley, 2005.

[22] Melvin C. Fitting. A kripke-kleene semantics for logic
programs.Journal of Logic Programming, 2(4):295–312,
1985.

[23] Melvin C. Fitting. Fixedpoint semantics for logic pro-
gramming. Theoretical Computer Science, 278:25–31,
2002.

[24] Melvin C. Fitting and Marion Ben-Jacob. Stratified, weak
stratified, and three-valued semantics.Fundamenta In-
formaticae, Special issue on LOGIC PROGRAMMING,
13(1):19–33, March 1990.

[25] FormalSystems. The FDR Tool. available at
http://www.fsel.com/fdr2download.html.

[26] Thomas Gensler and Christian Zeidler. Rule-driven com-
ponent composition for embedded systems.

14

[27] Joseph Goguen and Rodney Burstall. Intuitions: Abstract
model for specification and programming.Journal of the
Association of Computing Machinery, 39(1):95–146, jan-
uary 1992.

[28] Joseph Goguen and Grigoe Rosu.Composition of Mod-
ules with Hidden Information over Inclusive Institutions,
volume LNCS 2635, chapter 11. Springer-Verlag, 2004.

[29] Terry Hays-Roth and Ross Klein. Abstractions for soft-
ware architectures and tools to support them. Carnegie
Mellon University, 1994.

[30] George T. Heineman and William T. Councill.
Component-based Software Engineering: Putting
the Pieces Together. Addison-Wesley professional, 2001.

[31] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International Series in Computer Science,
1985.

[32] Viliam Holub. Enhancing behavior protocols with excep-
tions.

[33] Joxann Jaffar and Jean-Louise Lassez. Constraint logic
programming.Proceedings of Principles of of Program-
ming Languages, pages 111–119, 1987.

[34] Jeong Ah Kim, JinYoung Taek, and SunMyung Hwang.
Rule-based component development. InSERA ’05: Pro-
ceedings of the Third ACIS Int’l Conference on Software
Engineering Research, Management and Applications,
pages 70–74, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[35] Dexter C. Kozen. Set constraints and logic programming.
Information and Computation, 142:2–25, 1998. Article
No IC972694.

[36] Kenneth J. Kunen. Negation in logic programming.
Journal of Logic Programming, 4(4):298–308, December
1987.

[37] David Luckham, John J. Kenney, Larry M. Augustine,
James Vera, Dough Bryan, and Walter Mann. Specifi-
cation and analysis of system architecture using Rapide.
Technical report, Stanford University, 1993.

[38] Markus Lumpe.A Lmabda Calculus with Forms, volume
LNCS 3628, chapter 11, pages 83–98. Springer-Verlag,
2005.

[39] Saunders MacLane.Categories for a Working Mathe-
matician. Springer-Verlag, 1998.

[40] Richard Magee, Narankar Dulay, Susan Eisenbach, and
Jeffery Kramer. Specifying distributed software architec-
ture. InProceedings of the Fifth Europeon Software En-
gineering Conference ESEC’95, 1995.

[41] Robin Milner. Communicating and Mobile Systems: the
π-calculus. Cambridge University Press, 2001.

[42] Sotris Moschoiannis and Michael Shields. A set-theoretic
framework for component composition.Fundamenta In-
formaticae, 59:373–396, 2004.

[43] Juho Mki and Ilka Weber. Component-based specification
and composition of market structures.

[44] Wu Qiong, Chang Jichuan, Mei Hong, and Yang Fuqing.
Jbcdl: An object-oriented component description lan-
guage. InTOOLS ’97: Proceedings of the Technology of
Object-Oriented Languages and Systems-Tools - 24, page
198, Washington, DC, USA, 1997. IEEE Computer Soci-
ety.

[45] David Sangiorgi and David Walker.Theπ-Calculus: A
Theory of Mobile Processes. Cambridge University Press,
2001.

[46] Michael W. Shields and Sotris Moschoyiannis. An au-
tomata theoretic view of software components. Techni-
cal Report SCOMP-TC-02-04, Department of Comput-
ing, University of Surrey, 2004.

[47] Stelios Sidiroglou, Angelos Stavrou, and Angelos D.
Keromytis. Network security as a composable service.
In Proceedings of the IEEE Sarnoff Symposium., January
2007.

[48] John Strassner. Policy-Based Network Management.
Morgan Kaufmann, 2004.

[49] Peter J. Stuckey. Constructive negation for constraint
logic programming. InLogic in Computer Science, pages
328–339, 1991.

[50] Peter J. Stuckey. Negation and constraint logic pro-
gramming.Information and Computation, 118(1):12–33,
1995.

[51] Steven Templeton and Karl Levitt. A requires/provides
model for computer attacks. InProceedings of the 2000
New Security Paradigms Workshop, pages 31–38, 2000.

[52] Dinesh Verma.Architecture and Algorithms. New Riders,
2000.

[53] S. Vestal. Mode changes ina real-time architecture de-
scription language. InProceedings of the International
Workshop on Configurable Distributed Systems. Honey-
well Technology Center and University of Maryland.

[54] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia.
A logic-based framework for attribute based access con-
trol. In FMSE, pages 45–55, 2004.

15

