: 4400 University Drive MS#4A5
C[;)epall'\}menl} Of CompUter SCIence Fairfax, VA 22030-4444 USA
eorge Mason University http://cs.gmu.edu/
Technical Report Series 703-993-1530

Security Policy Cognizant Module Composition

Paul Seymer, Angelos Stavrou, Duminda Wijesekera, and Suglajodia
{pseymejastavrojdwijesekjajodia} @gmu.edu

Technical Report GMU-CS-TR-2010-1

Abstract curity and performance policies. For QoP, we show two
kinds policies; viz., access to individual modules and in-

Component-based software development and deployformation flown between them as a consequent to com-
ment is based on developing individual software mod-position. For QoS, we show how to integrate local re-

ules that are composed on an as needed basis. Sugburce control policies of individual modules and com-

modules expose the computations they provide and theihunication resource policies between them. Figure 1
dependencies on providing these computations - that reshows our overall architecture.

sults in a well knownrequires-providesspecifications As an example, consider multimedia conferencing,

for modules. This paper provides a framework t0 COM-~here the conference coordinator residing at one site

bine modules that specify their requires-provides inter-, ants to use two other conferees with differing comput-

faces in a policy dependent way. Our framework specifying and communicating resources that are subjected to
policies as combinations of Constraint Logic Program-gitterent access control and communication policies. For
ming (CLP) based rules and our policies can cover mulgyample, the coordinator may reside at a site that allows
tiple aspectsassociated of compositions, such as SeCUyideo, audio, and HAIPE encryption, where one partici-
rity and quality of service. We apply our framework 10 4 \yith a land-line may only be allowed to use DES en-
specify Quality of Protection (QoP) and Quality of Ser- ryntion with audio and video capabilities and the other
vice (QoP) policies. An example shows the applicability participant joining by mobile telephone may only have
of our policy language to a teleconferencing applicationy,g a,dio stream, but no video or encryption capabilities.
with multiple security and resource usage policies. Consequently, for the modules to be correctly composed,
the conference should deliver both audio and video en-
; crypted using DES to the second participant and only an
1 Introduction audio stream to the third participant.

In component-based software development, modules are The advantage of this framework are many. Firstly, it
developed independently and composed oasineeded Separates independent aspects of composition (e.g. QoP
basis [30]. In order to facilitate such compositions (ei-and QoS) from structural composability criteria. Sec-
ther statically or dynamically), the composer needs toondly, it further provides a framework to separates dif-
be aware of what each module provides as a service arf@rent sub-aspects within an aspects. Thirdly, it provides
what it requires in order to provide that service - result-a basis to reason about all aspects and sub-aspects uni-
ing in the well knowrrequires-providespecification of ~ formly. Lastly, it adds policies to aspect-oriented com-
modules. Making thesequires-providesnterfaces pol- ~ Position.

icy dependentis the objective of this paper. In orderto do The rest of the paper is written as follows. Section 2
S0, we propose &onstraint Logic Programmingased presents the formal language of the rule-based composi-
rule language to specify thequires-provides policies tion framework that is sufficiently expressible to accom-
Our sample policies shown in this paper addresses twanodate many notions of module composition mostly re-
aspectof software composition; vizQuality of Protec- flecting existing definitions. Section 3 presents the sub-
tion (QoP)andQuality of Service (QoS$Skpecifying se- language for security policies. Section 4 presents the

n.
The rest of the paper uses names starting with an upper
case letter for variables and names starting with a lower
case letter for constants, and sometimes use a name with
ahat abovdfor exampleReq M) to describe a term with
e variables and constants, when it is too long the write out
% the details within a rule. We now describe the other parts
of our language.
nmodul e(Nare, Locati on, Req, Prov, Dept h):
is a 5-ary predicate where thdane is a constant or
variable from Sety representing a name. Similarly,
Locati on is a constant or a variable from§ety,
representing a location (or a set of locationsireq
Figure 1: Architecture of the Policy Framework is a constant or a variable representing an ordered
triple of the typeSet; x Setgop x Secgos used to
model a set with elements of the form (interface, Set
- . of QoP and QoS options) representing the collection
sub-language for QoS policies. Section 5 presents thgf requires interfaces with their options anBept h

semgntlcs and models for module composmon syr‘tax(sometimes denoted as 'Z’) is a set term used to encode
Section 6 presents an example composition of a telecon; . T .
ference. Section 7 presents related work and Section € recursive depth. Similarlfr ov is a constant_ or
' i variable from the same type as thatR#q, representing
presents our conclusions. : . A
the interfaces and the options of thmvidesinterfaces
of the component. In this version where we do not use
recursive compositions, we use the valuefiofor the
2 A Rule-based Language t0 Spec- pgpt h attribute.
ify Module Composition cModul e(Nane, Locat i on, Req, Prov, Dept h) ;]
is a 5-ary predicate with the same type of predicates
We propose using set constrainbased logic program- as the nodul e predicate, representing a composed
ming language to specify policies. The version of setmodule. In this version where we do not use recursive
theory we use is CLREET), the hereditarily finiteset ~ compositions, we use the value @ffor the Dept h
theory developed by Dovier et al. [15, 16, 17], where theattribute.
hereditarily finiteness refers to the fact that all sets areceonposabl e2(Nanel, Locat i onl, Reql, Provl,
constructed out of a finite universe (of so callegle- Nanme2, Locati on2, Req2, Prov2, Dept h):
ment$ by applying a finite collection of composition op- is an 9-ary predicate where
erators. The set of operators we usefare#, €, ¢,Us, / (Nanel, Locati onl, Reql, Provl),
Us, ||, If}, whereUs is the ternary predicat¥ Us Y = Z, (Nanme2, Locat i on2, Req2, Prov2) are the
An analogous explanation applies fog. Similarly X || two components, and theprovides interfaces of
Y holds iff X N'Y = (). Our constraints are conjunctions the second are connected to thequires interfaces
and disjunctions of these constraint predicates, instantiof the first andDept h is a set term used to en-
ated with terms belonging to a chosen setofts We code the recursive depth. We also use another
use five sorts for ModulesY), Locations (), Interfaces predicate conposabl e3(Nanel, Locati onl,
(1), QoP policiesQoP) and QoS optiongoS), respec- Reql, Provl, Nanme2, Locati on2, Req2, Prov2,
tively refereed to asKery, Kery, Kerr, Kergop and ~ Name3, Locati on3, Req3, Prov3, Depth) that
Kergos. Each sort has its own constants and functioncomposes three modules where threvidesinterfaces
symbols. We use five constant symbols to denote of the second and the third modules are connected to the
defined values.y, L1, L7, Lo,p and Lg,s to model requiresinterfaces of the first.

Composition
Provides | Modulel

H
Global flow
control policy

eeeee

partial functions. struct OK2(Nanel, Locati onl, Reql, Provl,
In addition, we use sets created with thesuch as Nane2, Locat i on2, Req2, Prov2, Dept h):
{0,{0}} to model the structure of any well-founded is an 9-ary predicate where

finitely branching tree. As will be seen shortly, we (Nanel, Locati onl, Reql, Provl),

use such nested sets to limit the recursive backtrackingNane2, Locat i on2, Req2, Prov2) belong to two
through rule chains. We also use nested sets to code itomponents anBept h is a set term used to encode the
tegers. For examplg{... {0} ...}} where the empty set recursive depth. This predicate specifies the structural
() is embedded im braces is used to represent the integercompatibility requirements between thmviderand the

requestemodules. Similarly, we use a 12-ary predicate2.2 Structural Composition Policies

struct OK3(Nanel, Locati onl, Reql, Provl, - N]
Nane2, Locat i on2, Req2, Prov2, Nane3, , Structural composability can be specified using the set

Locat i on3, Req3, Prov3) to model the structural constraint language and other user defined predicates as
integrity of a module composed from three sub-modulesdiven in the following two examples:

qopOK2(Narel, Locat i onl, Reql, Prov1l structOK2(N1,L1, Rel, Pr1, N2, L2, Re2, Pr2,7) «
Nanme2, Locat i on2, Req2, Prov2, Dept h): cModule(N1, L1, Rel, Prl, 5y),
is an 9-ary predicate where each of cModule(N2, L2, Re2, Pr2, 5y),
(Na.rml, LOC&t | Onl, Reql, PI‘ OV].) and typeOKZ(Nl,Ll,Rel,Prl,NZ,LZ,ReZ,P?”Z,Sfy;,,e),

PrinPr2=0,Rel N Re2 =0, Rel C Pr2,

(Nanme2, Locati on2, Req2, Prov2) belong to
SlaSQaStype €s.

two modules. The predicatpppOK2is used to specify

the security policy for module composition. Similarly, _
we use a 12-argopOK3() predicate for composing ~ 1his example says that two moduldsl and N2 are
three modules. structurally compassable iff they do not share any-

qosK2(Narel, Locati onl, Reql, Provi, ;g?;?;:fsr?fctise g:ﬁ%ﬁgsjI;g’aegicersoar&c;;gee&lgrses&
Name2, Locati on2, Req2, Prov2, Depth): is . P y
: ond moduleN2. By adding an extra clauseel C Pr2
an 9-ary predicate where : . .
. to the last line of the policy, we can allow partial com-
(Namel, Locationi, Reql, Provl), ositions where we the second modilé can provides
(Name2, Locati on2, Req2, Prov2) are pa- P P

rameters belonging to two modules ampt h is more interfaces than those required®y. Also by re-

a set term used to encode the recursive depth. Th\ézasgl?c;he :r?ir;?téilrgﬁzlsit%ori?vé%r]zetiegsig% dwrﬁo "
predicategos OK2 is used to specify QoS policies of the pp P

composition. We also use a 12-ary prediaas OK3() ule is unable to _prowde all required interfaces. By doing
. S0, we can partially compos€él and N2 and then com-
to specify QoS preferences for three modules.

) pose this intermediate result with another modvileto
typeOK2(Nanel, Locati onl, Reql, Provi, obtain a different definition of composition showing the
Name2, Locat i on2, Req2, Prov2, Dept h):

) i . . flexibility of our design. The conditiof1, S2, Stype € S
is an O-ary predicate where all interfaces inig seq to ensure the termination of queries.
(Namel, Locationl, Reql, Provl) match

the respective interfaces of Nane2, Locati on2,

Reqg2, Pr ov2) intype andDept h is a set term used to -
encode the recursive depth. Similarly, we use a 12-ar QOP Policies
predicatet ypeOK3() to specify type compatibility of

three modules. As mentioned, our sample QoP policies either control ac-

cess to modules or information that flow between them.
We modifyAttribute-based Access ContiéH4] of Wang
. . . etal. forthe former anéflexFlow[12] of Chen et al. for
2.1 Specifying Module Composition Poli- the jatter. These policies have their own languages and
cles are evaluated separately. Their evaluations are then im-

. . _ ported into the module composition framework by using
In this section we specify rules about module compo-two kinds of predicates.

sition. Composition rules must satisfy some structuralg|ow control: secur eFl ow2(Sub1, Rol e,

properties such as the requirement that one module Prex g1, N1, L1, Reql, Provi, Sub2, Rol e2,
vide the interfaces needed by the other module. First, Wey g2, N2, L2, Req2, Prov2, Z), say that informa-

specify the structural composition rules. tion is allowed to flow between moduleNl and
composable2(N1, L1, Rel, Pr1, N2, 2, Re2, Pr2,Z) «— N2 when they are composed. A similar predicate
structOK2(N1, L1, Rel, Pr1,N2, L2, Re2, Pr2, Z), secur eFl ow3(Sub1l, Rol e1, Or g1, Ni,

qopOK2(N1, L1, Rel, Prl, N2, L2, Re2, Pr2, Z,), L1, Reql, Provl, Sub2, Rol e2, Org2, N2, L2,
qosOK2(N1, L1, Rel, Prl, N2, L2, Re2, Pr2, Z;) Req2, Prov2, Sub3, Rol e3, Org3, N3, L3,

Zsy Zp, Zgq € Z. Req3, Prov3, Z) is used to exercise flow control be-

This rule defines structural compatibility using tween the moduleN1, N2 andN3. The last variabl& is
struct OK2(), security policy specified using the used to ensure that recursion terminates.
predicategopOK2() and QoS policy specified using the Access Control:do(Sub, Rol e, Or g, Loc, Mod,
predicateqosOK2() . A similar definition can be given | nt, Z) says that a subje&ub playing roleRol e be-
for conposabl e3() . longing to organizatio®r g at locationLoc can execute

interfacesl nt belonging to moduldvbd and the last Predicates in Stratum 4: Consists of two predicate
variableZ is used to ensure that recursion terminates. secur eFl ow2(Subl, Rol el, Org1, N1, L1,
Using the above two predicates exported fromReql, Provl, Sub2, Rol e2, Org2, N2, L2,
the global flow control policy specification mod- Req2, Prov2, Z) andsecur eFl ow3(Subl,
ule and the two local policy specification mod- Rol el, Orgl, N1, L1, Reql, Provl, Sub2,
ules at locations L1 and L2 are related to Role2, Org2, N2,L2, Req2, Prov2, Sub3,

qopOK2(N1,L1, Rel, Pr1,N2,L2, Re2, Pr2,Z) by Rol e3, Org3, N3, L3, Req3, Prov3, 7) that

the following rule. evaluates the final decision to allow information flow.
qopOK2(N1,L1,Rel, Pr1,N2 L2 Re2, Pr2,7) « A flow control policy is a finite collection of rules con-
secureFlow2(Subl, Rolel,Orgl, N1, L1, Rel, Prl, structed according to the following constraints:

Sub2, Role2,0rg2, N2, L2, Re2, Pr2, Zy), Rules in Stratum 1: Rules specify basic facts such as the
dor1(Subl, Rolel,Orgl, L1, N1, Pr1URel, Zy)), roles played by modules and modules belonging to orga-
doro(Sub2, Role2,0rg2, L2, N2, Pr2URe2, Z5)), nizations etc. Hence they should have a head predicate
Zy,Z1,25 € Z. belonging to Stratum 1 and an empty body, and there-

As described, in the above rule, the requesterfore should be of the following formywner (s, m,) <,
provider policy is considered secure if the playRole(s,r,0) < andorganization(s,org,}) <.
flow is permitted by flow control predicate Rules in Stratum 2: The head predicate must be one
secureFlow2(N1, L1, Rel, Pr1, N2, L2, Re2, Pr2, of canFl ow2(), cannot Fl ow2(), canFl ow3()
Zr), and the two access control predicatesor cannot Fl ow3() and the bodies may con-
dor1(Subl, Rolel,Orgl, L1, N1,Prl U Rel,Z;) tain predicates from stratum 1 and constraints
anddoya(Sub2, Role2,0rg2, L2, N2, Pr2 U Re2, Z) from CLP(Set). An example rule is as follows:
allow subject Subl to executeN1's interfaces and cannotFlow2(Subl, Rolel,Orgl, N1, L1, Reql, Provl,
subjectSub2 to executeV2's interfaces respectively. Sub2, Role2,0rg2, N2, L2, Req2, Prov2,7) «
organization(L1,01, Zy),
organization(L2, 02, Z1),
securityLevel (01, S1, Z2),
In order specify flow control policies, we add three more security Level(Oz, Sa, Z3),
sorts, Sub for subjects and andole for roles andOrg ~ S2 < 51,21, 22,23 € Z.
for organizations, and use the following predicates: Rules in Stratum 3: The head predicate of a rule
Predicates in Stratum 1: We use two binary predicates, musthave one afanFl ow2x () ,cannot Fl ow2* (),
owner (s, m 0) withm € Names ands € Subwhere canFl ow3* (), cannot Fl ow3* () and the bodies
owner (s, m 0) is true if modulem is owned by sub- may contain predicates from strata 1 or 2, constrains
ject s. Similarly, pl ayRol e(s, r) wheres € Sub from CLP(Set), or stratum 3 predicates that appear
andr € Role says that subject performs the role (i.e. positively, as shown in the following example.
job function or has a military rank). We also use a third canFlow2 * (Subl, Rolel, Orgl, N1, L1, Reql,
predicateor gani zat i on(s, or g, 0) ,sayingthatthe Provl, Sub3, Role3, Org3, N3, L3, Req3, Prov3,Z) «—
subjects works for the organizatioar g. canFlow2(Subl, Rolel,Orgl, N1, L1, Reql,
Predicates in Stratum 2: We use two 14- Provl,Sub2, Role2,Org2, N2, L2, Req2, Prov2, Z),
ary predicates and two 2l-ary predicatescanFlow2 x (Sub2, Role2,0rg2, N2, L2, Req2,

3.1 The Flow Control Sub-language

canFl ow2(Subl, Rol e1, Or g1, N1, L1, Req1l, Prov2, Sub3, Role3, Org3, N3, L3, Req3, Prov3, Zs)
Prov1, Sub2, Rol e2, Org2, L2, N2, Req2, Z1,%2 € Z.

Prov2, Z) ,andcannnot Fl ow2(Subl, Rol el, Rules in Stratum 4: This stratum contains the following
Orgl, Ni, L1, Reql, Provl, Sub2, Rol e2, rule: secureFlow2(Subl, Rolel, Orgl, N1, L1, Reql,

O g2, N2, L2, Req2, Prov2, 2). Similar def- Provl, Sub2, Role2,0rg2, N2, L2, Req2, Prov2,7) «
initions exists for predicatescanFl ow3() and canFlow2 * (Subl, Rolel,Orgl, N1, L1, Reql

cannot FI ow3() used for ternary compositions. Provl, Sub2, Role2,0rg2, N2, L2, Req2, Prov2, Z1),
Predicates in Stratum 3: Consists of two predicates —cannotFlow2 * (Subl, Rolel, Orgl, N1, L1, Reql,
canFl ow2*(Subl, Rol el, Orgl, Provl, Sub2, Role2,0rg2, N2, L2, Req2, Prov2, Z5)

N1, L1, Reql, Provl, Sub2, Rol e2, Org2, L2, 71,725 € Z.

N2, Req2, Prov2, Z) ,andcannnot FI ow2x* (FlexFlow [12] shows that this type of a rule-base is

Subl, Rol e1, Orgl, N1, L1, Reql, Provl, Sub2, locally stratified, and consequently returns an answer
Rol e2, Org2, N2, L2, Reg2, Prov2, Z), that are for every query. As already stated, we export predi-
used to recursively specify flow control permissions andcatessecur eFl ow2() andsecur eFl ow3() from

prohibitions. the flow-control sub-language to our security policy

specification language. Therefore, some variables neeldody B may have predicates from lower strata and
to be shared between the two sub-policy frameworksconstraint expressions. These are used to state basic
Section 6 shows how to use the flow control sub languagéacts about granting/denying access to services.

in enforcing security policies for module composition. Rules in Stratum 3: Rules with cando* or
cannot dox heads can have havecandox,
cannot dox predicates in their bodies only posi-
tively, but may havecando and other non-reserved
Discretionary access control polices that are stated ipredicates and constraint terms.

terms of (Subj ect, Obj ect, Access- net hod) Rules in Stratum 4: do(X,Y,Z,W,U,V,Z) «+
needs to be replaced with sextuple cando x (X,Y,Z,W,U,V,Z.),~cannotdo
(Subj ect, Rol e, Organi zat i on, Mbdul e (XY, ZW,U,V,Z_), Zy,Z_ € Z is the only
Name, Location, Interfaces) in order to ruleatthis stratum.

specify module composition policies. We do so by using Any finite collection of rules conforming to con-
the following predicates, appropriately adopted fromstraints (1) through (4) is said to be an access control
[54]. policy. Wang et al. [54] provides a fixed point seman-
Predicates in Stratum 1: Has predicates to represent tics for similar access control policies. But their use in
basic facts such as ownerships, subject-role assignmenttie module composition framework is limited to being
object and subject hierarchies etc. an exported predicate, and therefore taken as true, iff the
Predicates in Stratum 2:cando(Subj ect, instance is exported.

Rol e, Organi zati on, Modul e

Nane, Locat i on,

| nt er f aces, Z) andcannot do(Subj ect , 4 QoS Policies

Rol e, Or gani zati on, Modul e Nane,

Location, I nterfaces, Z) state which module In QoS policies, we represent total resources require-
options are permitted or prohibited from executing. ments (of a module and inter-module communication)
Stated attributes represents Subjects, Roles played s a multiset (i.e. a bag) where every resource unit of
the subjects, organizations that roles and subjects belors given type is represented by an element in the bag.
to, module name and interfaces with their security and=or example, if a mobile phone has 2 CPU threads

3.2 The Access Control Sub-language

QoS options. and 3 units of buffer space (say in Kilo bytes) avail-
Predicates in Stratum 3:cando=* (Subj ect , able for applications, total resources available are repre
Rol e, Or gani zat i on, Modul e sented ag| cpu, cpu,buf,buf,buf |}, where the sym-
Nare, Locati on, I|nterfaces, 2) and bols in between the bracd$ and|} are the (repeated)
cannot do* (Subj ect , elements of the resourdeag We decide if a module
Rol e, Organi zati on, Modul e Nane, to be used has sufficient resources to execute iff its re-

Location,Interfaces) are two predicates sources can be packed inside the resource bag offered
used to recursively extend the definitionsazEndo() by the hosting platform. For example, to verify that

andcannot do() . the hardware platform of a mobile phone with resources
Predicates in Stratum 4:do(Subj ect, Rol e, {| epu, cpu,buf,buf,buf |} can accommodate an ap-
Organi zati on, Modul e Name, Locat i on, plication with an estimated resource requirement (mul-

I nterfaces, Z) expresses the final decision about atiset) U, we need to check it/ is a (multi) subset of
module being able to execute with specified options. {| cpu, cpu, buf,buf,buf |}. With this representation,
Our access control policies are constructed using rewe propose a three level stratified logic programming

served predicates and possibly other application specifianguage with multi-set constraints as follows:
predicates using the following stratification: Predicates in Stratum 1: This stratum specifies service
Rules in Stratum 1: Specify basic relationships dependencies. The predicateeds(S,T) says that the
and application specific facts written as predicate(subsidiary) set of servicés are required to provide the
instances (i.e. rules with empty bodies). Someset of (primary) service$. allNeeds(S,T) says that
examples are owner(Subject, Module, () —, the set of service%' consists of all subsidiary services

role(Subject, Role,) —, and required to provide the set of primary services
organization(Subject, Org, emptyset) «. Predicates in Stratum 2: This stratum computes
Rules in Stratum 2: Rules using cando resource requirements for a given set of services with

and cannotdo heads must be of the all of its QoP and QoS options. In order to express
form cando(X,Y,Z, W,U,V, Z) — B or the resources needed to communicate, two predicates
cannotdo(X,Y, Z, W,U,V,Z) +«— B where the comRes(N1,L1,Prl, Rel, N2, L2, Re2 Pr2,R,Z7)

andcomRes * (N1,L1, Rel, Pr1,N2, L2, Pr2, R, Z) sively defineconRes+ () andl| ocal Res=*() using

are used. The first one says thaR re- positive occupancies of themselveszonmRes(),
sources are required to communicate betweer ocal Res() and (multi)set constraints respectively.
modules N1 and N2. The second predicate ConsequentlyB may have any predicate from stratum

comResx(N1,L1, Rel, Pr1, N2, L2, Re2, Pr2, R, Z) 1, but bodiesB and D should not haveonRes() and

is used to recursively compute resource need$ ocal Res() appearing negatively.al | ConRes()

of dependent services. Finally, the predicateand al | Local Res() collect all resources needed

allComRes(N1, L1, Rel, Pr1,N2 L2, Pr2, to communicate between sitdsl and L2 and at site

Re2, R, Z) says that the total amount of resourcesL1 respectively. BodiesC and E may have any

available to be consumed by all software moduleR.is other predicates belonging to lower strata. In the
Similarly, to compute the resource needs for localfollowing four rules, Z, ..., Z, are the set variables

platforms, we use two predicatecal Res(N1, L1, Pr1, that occur as the last parameter in predicates used in

R,Z) and localRes * (N1,L1,Rel, Pri,R,7) the bodies of the ruleB,C,D and E respectively.

where (N1,L1,Rel, Prl) requires resourcesR. comRes * (N1, L1, Rel, Pr1, N2, L2, Re2, Pr2, R, 7)

localRes(N1,L1, Rel,Prl,R) say that R re- <« B,Zi,...,Z,€Z.

sources are needed to servigdvl, L1, Rel, Prl), allComRes(N1, L1, Rel, Pr1, N2, L2 Re2, Pr2, R, Z)

and localRes x (N1,L1,Prl, Rel,R,Z) is «— comRes * (N1, L1, Rel, Pr1, N2, L2, Pr2,

used in recursive rules that compute the re-Re2,R,Z),C,Z1,,...,Z, € Z.

sources needed to execute all dependent serviceBicalRes (N1,L1, Rel, Prl,R,Z)

allLocalRes(N1, L1, Rel, Pr1,R,Z) says that the <« D,Z,...,Z,¢€ Z.

total resources requirement to service the modulel!LocalRes(N1,L1, Rel, Prl,R, 7)) <

(N1,L1,Rel, Prl,Z)is R. localRes x (N1, L1, Rel, Pr1,R,Z),E, Z1,...,Zy € Z.

Predicates in Stratum 3: This level computes resource

availability on local platforms and communication Rules in Stratum 3: Rules in this stratum may have

links. In order to do so we use two predicateslocal Limit(L1, R, Z)orcommLimit(L1, L2, R, Z) as

local Limit(L1,R1) and commLimit(L1,L2,R2) headsand (set and multi-set) constraints, but their bodies

which respectively says that modulé hasR1 amount may not have predicates from stratum 2. They are used to

of resources to execute and the total amount of resourcespecify resource limitations on the communication chan-

required to communicate between locatidnisand 1.2 nels and local sites.

is R2. Rules in Stratum 4: Rules at this stratum

Predicates in Stratum 4: This level renders the hascomResOK(N1, L1, Rel, Prl, N2, L2, Re2, Pr2,7)

final decision to allow a module to execute on aor localResOK(N1, L1, Rel, Prl,Z) heads and bodies

host, and connectable modules to connect to eachonsisting of predicates from lower strata with the usual

other. In order to indicate so, we use two predicates/y, ..., Z, € Z. These predicates say that QoS require-
comResOK (N1, L1, Rel, Pr1, N2, L2, Re2, Pr2, ments are satisfied for communication and local compu-
R,Z) and localResOK(N1,L1,Rel,Prl,R,7Z), tations respectively.
saying that with R resources, the modul&Vl can We use these predicates to compute the total resource
execute on its proposed host and modulesand N2 utility of a module and to specify the policy of deciding
can be connected to each other, respectively. if the modules are to be composed. For example, one
Predicates listed above can be used in rules of the foleould use an optimistic policy of composing modules if
lowing kinds. they consume about 110% of the total available resources
Rules in Stratum 1: Rules at this stratum are of the (such as in air-line seat reservations). Conversely, a pes-
forms P(X1,...,Xn,Z) <, needs(X,Y,0) simistic policy would not commit more than 60% of the
and allNeeds(X,Y, Z) — Body, where total available resources. More complex policies can
P(X1,...,Xn,Z) is any application dependent be composed based on better resource estimates. The

predicate that encodes factsneeds(X,Y) say that predicates at Stratum 4 are related to exported QoS poli-
serviceX depends on servicé§ and consequently, in cies using a rule of the following kind, whegos OK2
order to haveX, resources must also be provided ¥6r or qosOK3() are defined usingjocal ResCK() and
The Body of the last rule may contain application de-conmResOK() .

pendent predicateslepends, positive occurrences of ¢oSOK2(N1, L1, Rel, Prl, N2, L2, Re2, Pr2, Z)

al | Needs multiset constraints and+,,...,Z, € Z « local ResOK (N1, L1, Rel, Prl, Z1),

whereZy, ..., Z, are the set variables that occur as thelocalResOK (N2, L2, Re2, Pr2, Zs),

last parameter in predicates used in the body of the rulecomResOK3(N1, L1, Rel, Pr1, N2, L2, Re2, Pr2, Z.),

Rules in Stratum 2: Rules at this stratum recur- Z7;,72»,Z.c Z.

Pp(V) : p(V) = W is defined as:
This rule says that the QoS requirements are satisfied

iff the local computing requirements and communicaton ® W(H) = T if there is a ground clause
requirements are satisfied. A similar definition can be ~ H<Bu,..., B, in P* such thatV(B;) = T for
given forqos OK3() . i < n.
e W(H) = F if for every ground clause
5 Semantics H«By,...,B, in P* such thatV(B;) = F for
somei < n.

This section describes models of our module composi-
tion syntax and their policies. Taken as a constraint logic
program, our syntax has a three valued Kripke-Kleene
model [36, 22] where every predicate instance evaluate
to one of three truth valudgsue, falseor undefined We

will shortly show that every query (a request) will evalu-
ate to eithetrue orfalsg and therefore has only two truth
values - ensuring that every module composition request
is either granted or denied. Because we allow nested
negative predicates, we need to interpregation We

can either use negation as failureconstructivenegation

[10, 11] as proposed by Fages [20, 19]. This is because
the third alternative namely using constructive negation
as proposed. by Stuc!(ey [49, 50] requires _that the con- 4 geo 1(P) = vﬂ<a(\l,ﬁ T (P)) for every limit ordi-
straint domain bedmissibly closedBut Dovier shows nal a. ‘
that set constraints as we use them are not admissibly

closed, and proposes an alternative formulation to handle For Horn clauses (i.e.

nested negations [18]. Conversely, at the cost of requirgystraint predicates in the bodg} P) has a least fixed

ing some uniformity in cor'nputing negated subgoals of,qine that is considered the model theoretic semantics of
a computation tree, Fages's formulation does not requirgs 531 that is 7,,(P). But for three-valued semantics,

the constraint domain to be admissible closed [20, 19],q |ga5t fixed point may not be obtained at ordinal
Eormalmes follow. W_e first rgpeat some stgndard (_jeflnl—But following standard practice we take, (P) as the
tions as they appear in [23] in order to clarify notation. e aning(i.e. semantics) of our combined rule base (i.e.
composition rules + QoP policies + QoS Policigshs
formalized in definition 2.

o W(H) = L otherwise.

In evaluating®, negation is interpreted asT =
%, —-F = T and—-1 = 1. Now we define bottom-up
semantic operators for bothp and ® », where¥ stand
for either of them in the following.

o U0 1 (P) = Vigse, WhereVyy,. assignst (false)
to all instantiated atom.

yotl 1 (P) = ¥(¥> 1 (P)) for every successor
ordinal a.

those without negative non-

Definition 1 (P*,Tp and ®p | operators) Suppose
that P is a logic program, and le* be all ground in-
stances of atoms iRr. We taked«+— as A and any ground
atom A not in the head of any rule ad—f al se. We
now define two and three valued truth lattices to be
2 = ({T,F},<9) and3 = ({T,F, 1}, <g3) respec-
tively, whereT', F and L are taken to meart r ue,
fal se and unknown truth values. Partial order-
ings <z and <3 satisfy the conditiond” <, T and

1 <3 T, L <g F respectively. A mappiny from
instantiated clauses of” to 2 and 3 is said to be
respectively a two-valued or a three-valued valuation
of P. Given a valuationV, the two and three valued
immediate consequence operatdrs(V') and ®p(V)
are defined as follows.

Tp (V) : Tp(V) = W is defined as:

Definition 2 (bottom-up semantics) Let P be a policy
and® be the three-valued immediate consequence oper-
ator stated in definition 1. Then we say that. ®*(P)

is the model of°.

Definition 2 says that we obtain a model®fby eval-
uating the® operatorw many times. As promised, we
now show that J,., ®*(P) only takes two truth values.

In order to do so, we consider a version of the stan-
dard operational semantics for constraint logic programs.
Thereafter by defining sank for a formula so that the
rank decreases as one proceeds from the root towards the
leaves of a top down computation tree, we show that ev-
ery computation terminates. The property we use here is

e W(H) = T if there is a ground clause the well-foundedness of the membership predicate built
H«B,,...,B, in P* such thatV(B;) = T for into some of our predicates (namely, those that would
i<n. interleave recursion and negation). In order to do so, we

N now repeat (a version of) operational semantics proposed

e W(H) = F otherwise. for constraint logic programs [33, 35].

Definition 3 (operational semantics) A state is a pair are well-ordered in Lemma 1 to show that any applica-
(A, C) of multisets of predicated and constraints”. tion of any of our rules reduces the rank of tiée state
LetP be an ABAC policy andl4, C') (A’,C") are states. and therefore must terminate finitely.
We say that:))
Lemma 1 (miscellaneous properties of ranks)
o (AU{p(3)},C) =1 (AUB,CUC"U{F=1))isa Supposg h<—B. is a Qerivat!on rulg where ' the
one-step derivation provided#)« B, C” is a rule last attribute is fully instantiated (i.e. variable

in P andp(s)—B, C” is a renamed apartinstance fre€). ~ Then R(h) > R(b) for any reserved
of p(3)—B, C”. predicate b in the body B. Furthermore, if

(AU {p(®},C) =1 (AUB,CUC U{F = {})
e We say tha{4, C) fails if A # () and there is no is a one-step derivation wherg(t)—B,C” is a rule
predicatep € A wherep(t)—B,C” is arule inP. in P and p(8)«B,C” is a named apart instance of
p(8)«—B,C”. ThenR(AU {p(5)}) > R((AU B).
o We say that(A,C) is successful iflA,C) —.
(0, C") for some constraint set” satisfiable by an ~ Proof:
assignment of variables to values, wheres, is Case 1: Predicates of the Access Control Sub lan-
the reflexive transitive closure ef . guage
To prove the first claim, according to policy defi-
e A query(A,C) is said to flounder if it neither suc- nition, the reserved predicates arando cando+,

cessful nor fails. cannot do, cannot do* anddo. We consider each
of them now.
The third clause of definition 3 usually readqads C') cando, cannotdo: cando(—,—,—,...,{0})—B

is said to be successful {f4,C) —. (#,C’) for some whereB consists of non-reserved predicates or is empty.

consistent constraint sé€t. But Dovier et al. shows that This is the only allowed form ofando in a rule head.

in the computable set theory we use, a set of constrainthus, R¢ando(—, —,—,...,{0})) = 1 and R(b) =0

C' is consistent iff it is satisfiable by some assignmentfor any predicateéb in B. A similar argument holds for

of variables to values [15, 16, 17]. Coincidentally, the cannot do.

operational semantics given by definition 3 and the fixedcando* andcannot do*: According to the third rule

point semantics given by definition 2 coincide [33, 35]. in the policy definition, ifcando* (—, —, —, ..., Z) isin

We now proceed to show that our policies do not floun-the body and:ando * (—, —, —, ..., Z’) is in the body,

der. thenZ = {Z'|U} for some set/. Hence by defini-

tion 4, R(cando x (—, —,—, ..., Z)) > 1 + R(cando *

Definition 4 (rank) We say that the rank of a well- (—,— —,7)).

founded set is the maximum nesting of braces in it, fordo: The same argument applies for rules with a

mally definedrank(s) to be maxl+rank(u), rank(v)} cando * (—,—,...,Z) head. The only rule with a

whens is of the form{w | v} and as0 otherwise. We say do(—, —,...,Z) head isdo(X,Y,—,{Z}) < cando *

that the rank of an instance of a reserved predicate isthd—, —, ..., Zy), —cannotdo * (—,—,...,Z3). Thus,

rank of its last variable, and the rank of a rule instance R(do(—, —,...,{Z})) = 1 + maz{R(cando x*

is the rank of its head predicate. (—,—,...,2Z1)), R(cannotdo x (—,—, ..., Z2))}.
SupposeA is a finite multiset of predicates, and Case 2: Predicates of the Flow Control Sub Language

{a1,...,a,} lists elements ofd in the decreasing or- This case is similar to that of Case 1, due to the simi-

der of their ranks. That is, they satisfy the condition larity of the rules at the same starts.

thati > j — R(a;) > R(a;), whereR(a;) is the Case 3: Predicates of the QoS Policy Sub Language

rank ofa;. Supposen is the highest rank imd. That This case is similar to that of Case 1, due to the simi-
is, m =maX{R(a) : a € A}, and letC(A,i) =| larity of the rules at the same starts.

{R(a;j) : R(a;) = i} | for everyi < m. Thatis, Case 4: Predicates for Composition

C(4,1) is the number of predicates with rark Then For predicatesnodul e, cMdul e, typeOK2,

define R(A), the rank of the multisel as the vector typeCK3, structOK2 andstruct OK3 are base
(C(A,m),...,C(A,0)). We order multiset ranks (that predicates, where the last attributéisHence they have
is (C(A,m),...,C(A,0))) lexicographically. Rank 0, and therefore do not flounder.

For the predicateonposabl e2, the prescribed rule

Definition 4 defines the ranks for reserved predicatespf usage is as follows.

rules and multisets of predicates. Because the multisetorposable2(N1, L1, Rel, Pr1, N2, L2, Re2, Pr2,7) «
ranks are finite sequences of non-negative integers. WetructOK2(N1, L1, Rel, Pr1, N2, L2, Re2, Pr2, Z),
use the fact that finite sequences of non-negative integetg®pOK2(N1, L1, Rel, Pr1, N2, L2, Re2, Pr2, Z,),

qosOK2(N1, L1, Rel, Prl, N2, L2, Re2, Pr2, Z,), 6 An Example
Zs, Zpy Zq € Z.

Hence the rank of any instance obnposabl e2 This section shows an example application of our frame-
is max {struct OK2, qopOK2, qosOK2}+1. A work to a conference call manager. As shown in the
similar argument holds faronposabl e3. u schematic of Figure 6, thtalking phaseof the tele-

Now we use the first claim to justify the second. Sup-conferencing module is constructed from three exist-
pose that(4 U {p(5)},C) —1 (AU B,C UC” U ing modules, aranager located at thepent agon,

{5 = }) is a one-step derivation using the ABAC rule & | and phone located aif t Meade and anbi | e
p(H)—B,C" is a rule inP andp(5)—B,C” is a fresh Phone located ini raq . Theprovidesinterfaces of the

instance op(5)«— B, C”. To prove that?(AU{p(3)}) > mnager is used by the conferees and tlegjuiresin-
R(A U B), supposeR(A U {p()}) = (km, ..., ko), terfaces are connected to tpeovidesinterfaces of the

R(P) =t < m, andR(B) = (ty,...,to) where |and phone andnobile phone modules. Thee-

u < t. ThenR(AU B) = (km,.--,kir1, ke — quiresinterfaces of these modules are used by the con-
1,ke,... ki +ti,..., ko). Inthe lexicographical order- ferees at their respective sites.
ind, (km, .- ko) > (kmy - ket ke — Uke, oo ki +

- ko), implying R(A U {p(5)}) > R(AU B).

" S R P
We now use Lemma 1 to show that composition x—"— i

gueries terminate. o anager \
Theorem 1 (finite termination of queries) Every Mobile »

query (A,C) either fails or succeeds, wherd is

a reserved predicate with a fully instantiated first Figure 2: The Composed Teleconferencing Module

attribute.
Proof: The call manager has four interfaces: two dedicated
Suppose(A4,C) —1 (Ao, Co) —1 (A1,Ch),...Is per conferee where the first interface is used to send

an infinite sequence of one-step reductions. Then bynultimedia streams consisting of some combination of
lemma 1,R(A, C) > R(Ao,Co) > ...is aninfinite de- audio, video and textual data and the second interface
scending sequence, contradicting the well-foundedness used to receive the same data from the other two
of the rank function. This is a contradiction, as the lexi- conferees. Hence we model the conference manager
cographical ordering on integers is well-foundedsAs g module(manager, pentagon, qu\M, Pr/o?M)

a corollary, we now obtain that any query always gives a,here R@\M is {(toLand,A,B),(fromLand,A,B),
yesor noanswer, implying that following theorem which (toMobile,C,D),(fromMobile,C,D) and ProoM is

says that all three valued models have only two truth Val'{(taIkM,X’,Yi,(li,stenM,X,Y)}., i’he manager module

uestrue andfalse is specified using the following rule:
cModule3(manager, L, {(toLand, A, B),
Corollary 1 (three valued model has two truth values) (fromLand, A, B), (toMobile, C, D), { fomMobile,

Every three valued model of a composition policy as-c D}, {(talkM, X,Y), (listenM, X,Y)},)
signs eitherT" or [for reserved predicates where the . (jes} C X C {des, 3des, aes},

first attribute is instantiated. In that case, bottom-up {4ydio} C Y C {audio, video, text},
semantics and the well-founded constructions assign$3des} C A C {des, 3des, aes},
the same truth values to the same predicate instance§jes} C C{des, 3des, aes}, {audio, text} C B,

and have the same answer sets. D C {audio,video, text}, X = AUC, Y = BUD.
The head predicateMbdul e3() of the above rule
Proof: See [7]. B says that the moduleanager, located atl, has two

Corollary 1 show that every composition request is ei-providesinterfacest al kMand| i st enM has shared
ther honored or rejected. But notice that our model is nosecurity and QoS parameter sel§ and Y. The
a fixed point of thed operator , as it is well known that head predicate also says that this module has feur
the least fixed point of thé operator is notv - mean- quires interfaces: t oLand, fromnlLand, t oMobi | e
ing that the fixed point o® is not attained in a countable andf r omvbbi | e, where the first two are to be con-
number of iteration.® [24, 19]. ([24] gives a simple nected to a land line with respective QoP and QoS pa-
counter example) rameter setsl and B. The latter two interfaces can be

connected to a mobile phone with QoP and QoS paconfigurable subjected to the constrainfdes} C

rameter set€” and D. The design constraints of the

C C {des,3des,aes} and {audio} C D C

manager module appears in the body of the rule, and{audio, video, text} in the second and third lines of the

are as follows: The QoS parameters of fgrevidesin-
terfacest al kMand| i st enMmust be the same (be-
cause they are given as (talkM,X,Y) and (listenM,X,Y))
and contairdes and is contained inles, 3des, aes,
specified agdes} C X C {des, 3des, aes} in the fourth
line of the rule. Similarly, QoS parameters must con-
tainaudi o and must be chosen froaudi o, vi deo
andt ext , stated in the sixth line akaudio} C Y C
{audio, video, text}. Similarly, the land line must pro-
vide at leasBdes encryption and could includges or
aes, as stated in the seventh line §%des} C A C
{des, 3des, aes}. Similarly, the land line must provide at
leastaudi o andt ext and may includei deo, stated
as{audio,text} C B, E C {audio, video,text} in the
eighth line. The last line of theruleY = AUC,Y =

B U D says that the@rovidesinterface of tharanager

rule. Now we specify the composition.

cModule2(telecon, pentagon, Re/T\con7 P?‘E“Z'on7 Z)

— composable3((manager pentagon, R;q\M, PT/O-;M),

(land, ftMeade, ReqLand ProvLand)

(mobzle iraq, R ReqMobzle ProvMobzle) 0),

PrTecon = PTM ReTCon = ReqLand U ReqMobzle
Above rule with aM odule2() head says that location

pent agon requires a moduléel econ that provides

PrTcon and requires capabllltleBeTcon The right

hand side of the rule says that thel econ module that

is constructed from three modulesnager, | and

andnobi | e, located at thgpent agon, f t Meade and

i raq respectively. Theequiredandprovidedinterfaces

of the composed moduleel econ can now be con-

structed from the last two lines of the rule above as fol-

lows:

module must match all the security and QoS options

available to ity equi r es interfaces.

The Land Conferee’s module is modled as
module(land, ftMeade, ReqLand, ProvLand, ()
whereRe(ﬁ\and is {(talkLand,A,B){listenLand,A,B)
and ProvLand is {(toLand,A,B),(fromLand,A,B)
defined using the following rule.
module(land, L, {(talkLand, A, B), (listenLand, A, B)}
{(toLand, A, B), (fromLand, A, B}, —

{des} C A C {des,3des,aes},{audio} C B
{audio, video, text}

The rule above shows that thand conference mod-
ule, located atl, consists of twoprovidesinterfaces
toLand andfromiand and two requiresinterfaces
tal kLand andl i st enLand. As the rule says, the

-

PrTcon = ProvM
= {(talkM,X,)Y), (listenM, X,Y)},
ReTcon = Re@nd U ReqM\obile

{(talkLand, A, B), (listenLand, A, B),
(talkMobile, C, D), (listenMobile, C, D)})

Subjected to the following constraints:

{des}
{audio}
X

Y

C X,A,C C{des,3des,aes}
Y, B, D C {audio, video, text}
AuC

BUD

N

security and QoS parameters, respectively given by set

variablesA and B are configurable subjected to the con-
straints{des} C C' C {des, 3des, aes} and{audio} C

D C {audio, video, text} in the second and third lines
of the rule.

The Mobile Conferee’s module is modeled as
module(mobzle iraq, ReqMobile, ProvMobile, 0)
where ProvMobile is {(toMobile,C,D), (fromMo-
bile,C,D)} and ReqM\obile is {(talkMobile,C,D),
(listenMobile,C,D} defined using the following rule.
module(mobile, L, {(toMobile, C, D), (fromMobile,
C, D)} (talkMobile, C, D), (listenMobile, C, D)}, 0)
{des} C C C {des,3des,aes}{audio} C D
{audio, text}.

Above rule says that therobil e component
at location L consists of two provides interfaces
t oMobi | e and f r omVbbi | e and two requires in-
terfacest al kMobi l e and | i st enMobi | e, with
QoP and QoS given by set variablés and D are

—
C

10

We now explain how the composition is written.
Firstly, PrM says that the composed module name
t el econ at thepent agon must provide the capabil-
ities listed in PrTcon, requiring capabilitiesQe/Tzon.
Notice that Prif is a set with two ordered triples
(talkM, X,Y) and(listenM, X,Y"), which says that it
may provide the ability to translateudi o with pos-
sibly more QoS capabilities thaaudi o and possi-
bly more QoP capabilities thades. The specifica-
tion says that the conference manager’s site must have
all QoP and QoS related services available for all mo-
bile and land phone conferees. Notice that the secu-
rity and QoS capabilities are specified using set vari-
ables, such aX, Y etc., that may be instantiated by the
caller of the rule, and resolved by the constraint solver
CLP(Set) during the composition process. Notice also
thatconposabl e3() is specified using the structural
rulestruct 3() as defined in Section 2.2.

We now show the QoP and QoS policies. In order to doexpose location specific information inadvertently. We now
so, we specify global cross-domain flow control policiesspecify the access control polices at the mobile phone, and
that apply to the communication links spanning acrosgmit others for the sake of brevity.
all three sites and access control policies that regulate
the accesses to the resources at each site. The facts ab§{ftdomotite (S, 1, Org, mobile, L, {(talkMobile, A, B),
the modules, their users and the roles played by thesgstenobile, C, D)}, Z) — owner(S, mobile,),0 € Z.
o (.1, Org . L (b 4.5,

Lo o (fromMobile,C, D)}, Z) «— des € C,des € A,
sites: the confe_renceanager s site peqt agon, the role(S, R, 0), owner(mobile, S, 0),
| and phone’s sited t Meade and thenobi | e phone’s k¢ {recon, commander},
sitei r aq. The square at the right hand bottom corner of ., ¢ {china, Afghanistan},d € Z.
Table 1 stores information about the teleconference mod-
ule. There, we have stored multiple owners, a new role cannotdomoviic(S, R, Org, mobile, L, {(toMobile, A, B),
namet el econf er enci ng and a non-physical loca- (fromMobile,C, D)}, 0) « video € BU D,
tiongl obal . L € {china, Afghanistan}.

We now state the flow control policies. The first rule cando *movite (S, R, Org, mobile, L, Pr, Re, Z) -
places some constraints on information that can flowf@"@0mebite(S, R, Org,mobile, L, Pr, Re, Z1)
from the two module$ and (telephone) androbi | e 1E€Z.
(telephone) to the (teleconferenaenager module)
simultaneously. They are (1) the manager’s organization ©@"10tdo *mobiie (S, R, Org, mobile, L, Pr, Re, Z)
must be either th@ent agon or j t Chi ef s, (2) the cannotdomoyite (S, R, Org, mobileL, Pr, Re,0),
other two modules belongs eitherw$ Ar my, usNavy :
or the usAF, the manager of the teleconference must
play the roles of aconmOf fi cer (communications
officer) or aconmander. It further stipulates that
the users of other modules must play the roles of €annotdo *moviie (S, R, Org,

domobite (S, R, Org, mobile, L, Pr,Re, Z) —
cando *mobite (S, R, Org, mobile, L, Pr, Re, Z.),
mobile, L, Pr, Re, Z_)

commOf fi cer, recon (reconnaissance) i gnal Z+,2- € Z.))

(officer) and prohibits thenobi | e module being The access control pollcy at tmobi | e module says that_
located inchi na. the owner of that device may talk and listen to the device
canFlow3(Subl, Rolel, Orgl, manager, L1, Reql,, in the first rule. The second rule says that the device may
Provl, Sub2, Role2, Org2, land, L2, Req2, Prov2, conneqt toa teleconferenmnage_r through two interfaces
Sub3, Role3, Org3, mobile, L3, Req3, Prov3, 0) t oMobi | e andf r om\/b_bl | e provided that both str_eams are
— Orgl € ({pentagon,jtChiefs}, Org2,0rg3 € gble 'to u_sgdes e.ncryptlon, the owner of t_he mobile _dewce
{usArmy, usNavy, usAF}, L2 # china, is using it in playing the role of a reconnaissance officer or a

commander, and the device is not being operated frbima
or Af ghani st an. The third rule of the policy explicitly pro-
hibits usingvi deo from chi na or Af ghani st an. Fourth
and fifth rules are there to resolve authorization conflicts a
to ensure that every request is answered affirmatively ca-neg
tively (i.e. no queries flounder). Similarly, the other twoda
ulesmanager andl and telephone can have their own access
control policies.

Following the stratification stated in Section 4, we firsteta
service dependencies as rules. They are stated in Table 2 for

Rolel € {commOf ficer, commander},
Role2, Role3 € {commO ficer, recon, signal}.

canFlow3 % (Subl, Rolel, Orgl, N1, L1, Reql, Provl,
Sub2, Role2,Org2, N2, L2, Req2, Prov2, Sub3, Role3,
Org3N3, L3, Req3, Prov3, Z) «—

canFlow3(Subl, Rolel, Orgl, N1, L1, Reql, Provl,
Sub2, Role2,Org2, N2, L2, Req2, Prov2, Sub3, Role3,
Org3,N3, L3, Req3, Prov3,Z1),Z1 € Z

safeFlow3(Subl, Rolel, Orgl, N1, L1, Reql, Provl, any site that has a (mobile or land line) telephone. As stated
Sub2, Role2,Org2, N2, L2, Req2, Prov2, in the table, audio and video individually requituq.., cpu.
Sub3, Role3, Org3N3, L3, Req3, Prov3, Z) «— units of CPU resources antd. f..., buf, units of buffer space
canFlow3(Subl, Rolel, Orgl, N1, L1, Reql, Provl, in order to maintain theontinuity of the media streams. But
Sub2, Role2,Org2, N2, L2, Req2, Prov2, if audi o andvi deo are present together, they need an ex-
Sub3, Role3, Org3, N3, L3, Req3, Prov3, Z1),Z1 € Z tra cpugi, amount of CPU an@. (bufa. + buf,) buffer (for

The last two rules are required to complete the policy double-buffering) in order to maintain lip-synchronizati at
specification, whereanFl ow3+ () allowscanFl ow3() to any local site (not for communication). Consequently, thes
be defined recursively anslaf eFl ow3() defines the final of strata 1 and 2 are as follows:
decision after any potential conflict resolution about flows needs({audio, video}, {lipSync},®) —

The important issue here is thaaf eFl ow3() and all the needs(X, X,,0) «—

predicates used to defireaf eFl ow3() must be globally needs x (X,Y, Z) «— needs(X,Y, Z1).

available, including the geographical locations, usexsthe needs * (X,Y U Z,7Z1) «— needs x (X, Z, Z2),needs *
roles of the participants of the teleconference, which may(Z,Y, Z3), Z1,Z> € Zs.

11

At the Manager’s site: Pentagon At the Land Phone’s site: Ft. Mead

owner(ltCook, manager,) owner(cpt.Jones, land, 0)

playRole(ltCook, commOf ficer,0) <+
—

-
playRole(cptJones, signal,)
organization(ltCook, pentagon, () -

organization(cptJones, usNavy, D)

At the Mobile Phone’s Site: Iraq At the Teleconference’s “site”- to be determined

owner(sgtJane, mobile,) owner({ltCook, cptJones, sgtJane}, telecon, ()

playRole(sgtJane, reconn, ()

[

pa
playRole(participants, {con ferencing},0)
<_

organization(sgtJane, usArmy, () organization(participants, global, ()

Table 1: Facts Stored in Local Access Control Policy Bases

| Service | Needed Services Resource Requirements Multi-Set Representation
audio auContinuity CpUg, bufqy {| epuiq, bufq |}
video vContinutiy cpuy, bufy {] epuy,buf, |}
text cpug, bu fy {| epug, bufy |}
{audio,videg lipSync eputip, 2.(bufau +bufy) | {] cpuiip, cpuq, cpuqg, bufo, bufa,
CPUy, bufy, cpuy, bufy, |}

Table 2: Service Dependencies of the Teleconferencingigqibn at Local sites

allNeeds(X,Y,Z) <« needs x (X,Y,Z1),7Z1 € Z. local ResOK (N1, L1, Rel, Prl, Res, Z) «—
allLocalRes(N1, L1, Rel, Prl, Res, Z1),

The first rule state that{audi o, vi deo} needs localLimit(L1, MaxRes,(),
{l'i pSync}. The next two rules say thaneeds=* is Res C MazRes,0, Z1 € Z.
the transitive closure afieeds, and the last rule collects all The simple rule above says that if the CPU and Buffer space
dependencies of. The given set of rules imply the conclusion is below that of the maximum available at the local Sitg,
al | Needs({audi o, vi deo}, {audi o, vi deo, | i pSync}) .then the local QoS policy permits the module to be invoked.
We now state the rules for computing all resources requited a

a local site.

localRes2 x (N1, L1,{(-,-,{X | C}) | B}, Rel, Res, 7 Related Work

Z) « allNeeds(X,Y, Z1), resourceMap(Y, Res, (),

localRes2 x (N1, L1,{(-, -, C) | B}, Rel, Res, Z3). The subject matter addressed in this paper, gluing software
local Res2 x (N1, L1,{(-, -, 0) | B}, Rel, Res) modules to construct new modules and applications is an area
«— localRes x (N1, L1, B, Rel, Res, Z3) that has received much attention in the last two decades. It
Z1,Zo,Z30 € Z. falls within the areas o€omponent-based software engineer-
allLocalRes(N1, L1, Rel, Prl, Res, Z) «— ing [30], architecture description languagg$3] and to some
localRes x (N1, L1, Rel, Prl, Res, Z1),Z1 € Z. extent,aspect-oriented software desiffil]. It belongs in the

Two rules above show that the CPU and buffer require-latter because of our concentration in the aspects of QoP and
ments for resourceg (-, {X|C}|B} in the provides inter- QoS.
face is recursively computed using the resources requored t The comprehensive survey [13] summarizes the most promi-
offer all the services needed for executidy and adding nent architecture description languages (ADLs). Accadin
them to the buffer requirement of(_,_,C),B}. The to [13], there are about five main ADLs, Rapide [37], Uni-
required resource lookup table is given by the predicateCon [1], ArTek [29], Wright [3], Meta-H [53] and Darwin [40],
resourceMap(services, resources). Similar recursive rules of which we review and compare with some. More recently, an
can be written for therequires interface and added to the XML-based ADL has been introduced by Dashofy et al. [14].
total resources required for therovides interfaces. The Broy etal. [9] also addresses the central questiontadt char-
last rule computes all the required resources in the preglica acterizes a software componentThe authors argue that a
al | Local Res(). We now model the resource allocation component should (1) encapsulate data (hence hides informa
policy for the communication part of the teleconferenceaks f tion representation and computational algorithms), ()lén
lows: mentable in most programming languages, (3) can be hierar-

12

chically nested, (4) has clearly defined interfaces and §B) ¢ ing, assigning modules to module variables, freezing wabie
be incorporated in a framework. The framework we proposevariables etc. The authors show that the (module compaoitio
have all these properties. terms in their module calculus has a normal form. In an anal-

Beugnard et al. [8] have identified the following four levels ogous attempt Lumpe [38] describedorms, ai-calculus for
of contractsthat can be specified in components and their inter-forms with form variables, bindings of modules to modulevar
connections: (1) Syntactic contracts to specify data tygma-c ables, extensions and restrictions of modules, de-refgramd
patibility, (2) Behavioral contracts to specify pre-caiwhs, assigning context for modules. Although this work addresse
post-conditions and invariants, (3) Synchronization mets the syntactic contactsn the sense described by Beaugnard et
to specify dependency constraints between information exal. [8], they also have a normal form forforms expressions.
changed within a concurrent context and (4) Quality of SErvi Goguen et al. [28] also develops an Intuitions [27] basecueal
contracts to specify quantitative properties like maximegn lus for module composition. Formulated using Category The-
sponse time etc. Our paper extends this list by adding a fifthory [39], they use aggregation, re-naming, enrichment gicel
level of securityand separate policy from design by having a functionality to a module) information hiding, and paranest-
modular design framework that taken multiple policies,mas i tion of modules as operators.
plied by the plethora of emerging policy research [48, 52]. Two papers, Gensler et al. [26] and Kim et al. [34] de-

One of the most cited publications in the area of mod-scribe rule-based formulations of module compositions] [2
ule composition is Allen and GarlandsAs Formal Basis for describes a module with respect to its input and output param
Architectural Connectionj4] provides an operational seman- eters, public interfaces and mandatory properties. Thesteod
tics for theW i ght architecture description language. They then expresses these properties using custom-made fesdica
say [4] [3] that two modules connecting to each other must ex-and specifies Prolog rules to make inferences about preperti
press aole and aport for that purpose. Informally, theole of modules. But these rules do not provide a general franewor
describes the purpose of the connection and exposes its inteto specify policies on propositionally, QoS and securit@4][
face name so that it can be used by pwet which formally ~ describes roles and rules about modules imdaptable com-
specify the allowable interactions. They are connectedgusi puting modelinspired by software engineering concerns. The
a connectionthat specify the interaction protocol. The ports rules sets they have described covers business concemasuc
and roles are formalized usi@pmmunicating Sequential Pro- subscriptions, contracts and sales of customer bases étc. A
cesses (CSHB1]. The consistency of the specification of two though we were inspired by these attempts, we recognized the
connecting ports with that of their end connectors is addrds need to expand upon their work to develop a comprehensive
as a refinement problem in tfailure divergence modelf CSP rule-based framework that specifies policies for module-com
and is checkable by the FDR tool [25]. position, QoP and QoS.

To the extent we know, two other publications have elabo- JBCDL [44] introduces thdade Bird Component Descrip-
rated in the behavioral specification of ports and their eaAn tion Language that is a part of a component description lan-
tions. The first is the ADLDarwin [40] where port behaviors guage developed for thiade Bird Component Librarthat al-
are specified using-Calculus [41, 45]. The advantage of this lows hierarchical composition of classes of libraries.sT$ys-
work over [4] is its ability to reason about making conneatio tem provides templates to describe software modules dorgsis
to mobile modules. of parameters, provided and required functions, connegtio

Moschoyiannis [42] has formalized component compositionclass members, their implementation code and code dependen
using a set-theoretic framework where the (requires and procies. Although implementable, this work does not explcitl
vides) interfaces are given as a collection of methods aad thcover QoS and security either. Secondly, parameterized tem
synchronous interactions between the two parties arefgmbci plates made for software modules are difficult to use to esgre
as an abstract partial ordering. The consistency of a coiemec compositional policies.
between two interfaces is verified by checking the conststen [32] makes the important observation that exceptions could
of the partial orders expressed by the two interfaces. Irea pr arise (due to faults) when linked software modules are drelcu
vious work, Shields et al. [46] formalized port behaviorsas and proposes to specify exception handlers (using an approp
tomatons. Consequently, the former becomes a more abstraate fault model) to address them during the design phase. We
versions of the latter. Moschoyiannis [42] continues toeade extend this suggestion to incorporate security policidsiudle
set theory and automata based formulation of module composimisuses that may arise due to mal-acts (using some mal-actor
tion. Our rule-based formulation of module compositiomgsi model).
computable set constraints [15, 16, 17] policies were nesbi Templeton and Levitt [51] proposes an abstract syntax to
by his set-based formalizations. specify attacks using eequires-providessyntax. This work

There have also been attempts to usealculus [6] based has inspired other work that specify security vulneraiesitus-
formulations of module composition. Anancona and Zucca [5]ing pre-conditions and post-conditions. Sidiroglou et[4F]
have developed thealculus for module systems (CMBYy proposes to construct mediated overlay networks as a campas
mixing A-calculus and theobject calculusof Abadi and able service. They argue that many security vulneraktsliten
Cardelli [2]. In this calculus, a module is chracterized bg t be avoided by using the appropriate security servicesheurt
values itimports (like requires), exports (like providagpd has more Makio [43] proposes @quires-providedased language
as internal variables. Although the definition of moduléiiny to specify negotiation structures that can model complex ma
is somewhat similar to that of [42], this work defines more op- ket place negotiations. Their models specify synchroidnat
erators on modules: taking tlsem reducing modules, renam- details of the ports to specify acceptable business ndigotia

13

strategies.

8

tire policy language and shown that our policies are flounder [15]

Conclusions

[11] David Chan. An extension of constructive negation and

12
We have constructed a CLP(Set) based policy language that |[s

capable of specifying module composition based on their ex-
posed requires-provides interfaces. As shown, our largisgag
able to specify and enforce policies related to multgdeects
of the composition. We have shown how QoP and QoS can be
used as sample aspects, and a modular way to decompose and
specify policies that govern the composition into sub-atpe
within an aspect. Towards this end, we have shown how access
and flow control policies can be specified as sub components of
security policies.

We have also provided an operational semantics for the en-

free. That is the rule execution engine will always returiyes
andnoresponse to every composition request.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

The UniCon Architecture Description Language

Martin Abadi and Luca Cardelli. A Theory of Ob-
jects Monographs in Computer Science, Springer-
Verlag, 1996.

Robert Allen and David Garlan. Beyond definition/use:
Architectural interconnection. IfProceedings of the
Workshop on Interface Definition Languagd®ortland,
Oregon, 1994.

Robert Allen and David Garlan. A formal basis for ar-
chitectural connection.ACM Transactions on Software
Engineering and Methodologg(3):213-249, July 1997.

Davide Anancona and Elena Zucca. A calculus of module
systems.Journal of Functional Programmingdl2(2):91—
132, 2002.

Henk P. BarendrechtThe Lambda Calculus — Its Syntax
and SemanticsNorth-Holland, rev. edn, 1984.

Steve Barker and Peter J. Stuckey. Flexible accessalontr
policy specification with constraint logic programming.

ACM Transactions on Information and System Security [22]

2004. to appear.

(13]

(14]

(16]

(17]

(18]

(19]

(20]

[21]

[8] Antoine Beaugnard, Jean-Marc Jezequel, Noel Plouzeau,

(9]

[10]

and Damian Watkins.
aware.lEEE Computer32(7):38-45, 1999.

Mansfred Broy, Anton Dieme, Jurgen Henn, Kai

Koskimies, Frantisek Plasil, Gustav Pomberger, Wolf- [24]

gang Pree, Michael Stal, and Clemnts Szyperski. What
characterizes a (software) componéuftware-Concepts
and Tools 19:49-56, 1998.

David Chan. Constructive negation based on the com
pleted databases. In R. A. Kowalski and K. A. Bowen, ed-

itors, Proc. International Conference on Logic Program- [26]

ming (ICLP) pages 111-125. The MIT Press, 1988.

14

Making components contract[23]

125]

its application in coroutining. In E. Lusk and R. Over-
beek, editorsProc. North-American Conference on Logic
Programming pages 477—489. The MIT Press, 1989.

] Shiping Chen, Duminda Wijesekera, and Sushil Jajodia.

Flexflow: A flexible flow control policy specification
framework. InDBSe¢ pages 358-371, 2003.

Paul Clements. A survey of architecture descriptiar la
guage. InEighth International Workshop on Software
Specification and Desigpages 16-28, 1996.

Eric M. Dashofy, Andre van der Hoek, and Richard Tay-
lor. A highly-extensioble, xml-based architecture dgscri
tion language. IProceedings of the IEEE/IFIP Work-
ing Conference on Software Architectupages 103-112,
2001.

Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gi
anfranco Rossi. Sets and constraint logic programming.
ACM Transactions of Programming Languages and Sys-
tems 22(5):861-931, 2000.

Agostino Dovier, Carla Piazza, and Gianfranco Rossi. A
uniform approach to constraint-solving for lists, multi-
sets, compact lists, and sets. Technical Report Quaderno
235, Department of Mathematics, University of Parma,
Italy, 2000.

Agostino Dovier, Alberto Policriti, and Gianfranco Bs.

A uniform axiomatic view of lists, multisets, and sets, and
the relevant unification algorithmsFundamenta Infor-
maticag 36(2/3):201-235, 1998.

Agostino Dovier, Enrico Pontelli, and Gianfranco Rioss
Constructive negation and constraint logic programming
with sets.New Generation Comput9(3):209-256, May
2001.

Francois Fages. Constructive negation by prunifaur-
nal of Logic Programming32(2):85-118, 1997.

Francois Fages and Roberta Gori. A hierarchy of seman-
tics for normal constraint logic programs. Algebraic
and Logic Programmingpages 77-91, 1996.

Robert E. Filman, Tzilla Elrad, Siobhan Clark, and
Mehmet Aksit. Aspect-oriented Software Development
Addison-Wesley, 2005.

Melvin C. Fitting. A kripke-kleene semantics for logic
programs.Journal of Logic Programming?2(4):295-312,
1985.

Melvin C. Fitting. Fixedpoint semantics for logic pro-
gramming. Theoretical Computer Scienc@78:25-31,
2002.

Melvin C. Fitting and Marion Ben-Jacob. Stratified, Wea
stratified, and three-valued semantidsundamenta In-
formaticae, Special issue on LOGIC PROGRAMMING
13(1):19-33, March 1990.

FormalSystems. The FDR Toal
http://www.fsel.com/fdr2download.html.

available at

Thomas Gensler and Christian Zeidler. Rule-driven com
ponent composition for embedded systems.

[27] Joseph Goguen and Rodney Burstall. Intuitions: Alostra [44]
model for specification and programmingpurnal of the
Association of Computing Machiner§9(1):95-146, jan-
uary 1992.

[28] Joseph Goguen and Grigoe Rostiomposition of Mod-
ules with Hidden Information over Inclusive Institutions
volume LNCS 2635, chapter 11. Springer-Verlag, 2004. [45]

[29] Terry Hays-Roth and Ross Klein. Abstractions for soft-
ware architectures and tools to support them. Carnegie
Mellon University, 1994. [46]

[30] George T. Heineman and Wiliam T. Councill.
Component-based Software Engineering: Putting
the Pieces TogetheAddison-Wesley professional, 2001.

[31] C. A. R. Hoare. Communicating Sequential Processes [47]

Prentice-Hall International Series in Computer Science,
1985.

[32] Viliam Holub. Enhancing behavior protocols with exeep

tions. [48]

[33] Joxann Jaffar and Jean-Louise Lassez. Constraint logi
programming.Proceedings of Principles of of Program-
ming Languagespages 111-119, 1987.

[49]

[34] Jeong Ah Kim, JinYoung Taek, and SunMyung Hwang.
Rule-based component development.SEERA '05: Pro-
ceedings of the Third ACIS Int'l Conference on Software
Engineering Research, Management and Applications
pages 70—74, Washington, DC, USA, 2005. IEEE Com-[51]
puter Society.

(50]

[35] Dexter C. Kozen. Set constraints and logic programming
Information and Computatigri42:2—25, 1998. Article [52]
No IC972694.

[36] Kenneth J. Kunen. Negation in logic programming. [53]
Journal of Logic Programming4(4):298—-308, December
1987.

[37] David Luckham, John J. Kenney, Larry M. Augustine,
James Vera, Dough Bryan, and Walter Mann. Specifi-[54
cation and analysis of system architecture using Rapide.
Technical report, Stanford University, 1993.

[38] Markus Lumpe A Lmabda Calculus with Formsolume
LNCS 3628, chapter 11, pages 83-98. Springer-Verlag,
2005.

[39] Saunders MacLane.Categories for a Working Mathe-
matician Springer-Verlag, 1998.

[40] Richard Magee, Narankar Dulay, Susan Eisenbach, and
Jeffery Kramer. Specifying distributed software architec
ture. InProceedings of the Fifth Europeon Software En-
gineering Conference ESEC’95995.

[41] Robin Milner. Communicating and Mobile Systems: the
m-calculus Cambridge University Press, 2001.

[42] Sotris Moschoiannis and Michael Shields. A set-thdore
framework for component compositiofundamenta In-
formaticae 59:373-396, 2004.

[43] Juho Mki and llka Weber. Component-based specification
and composition of market structures.

15

Wu Qiong, Chang Jichuan, Mei Hong, and Yang Fuging.
Jbcdl: An object-oriented component description lan-
guage. INTOOLS '97: Proceedings of the Technology of
Object-Oriented Languages and Systems-Tools pade
198, Washington, DC, USA, 1997. IEEE Computer Soci-
ety.

David Sangiorgi and David WalkefThe w-Calculus: A
Theory of Mobile Processe€ambridge University Press,
2001.

Michael W. Shields and Sotris Moschoyiannis. An au-
tomata theoretic view of software components. Techni-
cal Report SCOMP-TC-02-04, Department of Comput-
ing, University of Surrey, 2004.

Stelios Sidiroglou, Angelos Stavrou, and Angelos D.
Keromytis. Network security as a composable service.
In Proceedings of the IEEE Sarnoff Symposiutanuary
2007.

John Strassner. Policy-Based Network Management
Morgan Kaufmann, 2004.

Peter J. Stuckey. Constructive negation for constrain
logic programming. IrLogic in Computer Sciengpages
328-339, 1991.

Peter J. Stuckey. Negation and constraint logic pro-
gramming.Information and Computatiqri18(1):12—33,
1995.

Steven Templeton and Karl Levitt. A requires/provides
model for computer attacks. Rroceedings of the 2000
New Security Paradigms Workshqmages 31-38, 2000.

Dinesh VermaArchitecture and Algorithmsd\New Riders,
2000.

S. Vestal. Mode changes ina real-time architecture de-
scription language. IfProceedings of the International
Workshop on Configurable Distributed Systetdsney-
well Technology Center and University of Maryland.

] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia.

A logic-based framework for attribute based access con-
trol. In FMSE pages 45-55, 2004.

