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Abstract

Recent advances in robotics engineering have enabled
the realization of self-folding machines. Rigid origami
is usually used as the underlying model for the self-
folding machines whose surface remains rigid during
folding except at joints. A key issue in designing rigid
origami is foldability that concerns about finding fold-
ing steps from a flat sheet of crease pattern to a desired
folded state. Although recent computational methods
allow rapid simulation of folding process of certain rigid
origamis, these methods can fail even when the input
crease pattern is extremely simple. In this paper, we
take on the challenge of planning folding and unfolding
motion of origami tessellations, which are composed of
repetitive crease patterns. The number of crease lines
of a tessellation is usually large, thus searching in such
high dimensional configuration space with the require-
ment of maintaining origami rigidity is nontrivial. We
propose a motion planner that takes symmetry into con-
sideration and reuses folding path found on the essential
crease pattern. Both of these strategies enable us to fold
large origami tessellation much more efficiently than the
existing methods. Our experimental results show that
the proposed method successfully folds several types of
rigid origami tessellations that the existing methods fail
to fold.

1 Introduction

Rigid origami has been a fundamental model in many
self-folding machines [1] that are usually composed of
mechanical linkage of flat rigid sheets joined by hinges,
such as the micro-thick folding actuators [2]. In the
past, people have enjoyed many practical uses of rigid
origami, ranging from folding maps and airbags to pack-
ing large solar panel arrays for space satellites and fold-
ing space telescope. In the near future, rigid origami

Figure 1: Folding process of a 11×11 Miura crease pat-
tern (DOF = 220) produced by the motion planner pro-
posed in this paper.

will take the form of self-folding machines and provide
much broader applications, such as in minimally inva-
sive surgery, where there is a need for very small devices
that can be deployed inside the body to manipulate tis-
sue [3]. Examples that illustrate the ability of transform-
ing rigid origami from a shape to another can be found
in Fig. 1 and Fig. 7, where a large flat sheet can be folded
into a compact stick or to a tube.

A key issue in designing rigid origami is foldability that
determines if one can fold a given origami form one state
to another. Researchers in computational origami have
attempted to simulate or plan the folding motion [4, 5,
6, 7, 8]. These existing methods, however, are known
to be restricted. For example, the work by Miyazaki et
al. [6] only allows bending, folding-up, and tucking-
in motions. Balkcom’s method [9] cannot guarantee
the correct mountain-valley assignment for each crease.
The well-known Rigid Origami Simulator by Tachi [8]
may sometimes produce motion with self-intersection
and can be trapped in a local minimum. One of the
main difficulties of planning origami folding motion
comes from its highly constrained folding motion in high
dimensional configuration space. For example, there are
100 closed-chain constraints in the 11×11 Miura origami
shown in Fig. 1. These constraints make most (if not
all) existing motion planners impractical, especially for
folding large origami tessellations.

Moreover, it is known to the community that given a
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crease pattern and a rigid goal configuration, the exis-
tence of continuous rigid folding motion is not guaranteed
in general [10]. Unfortunately, there is no known criteria
for determining whether a crease pattern or its tessel-
lation can be folded between two rigid configurations
without violating the rigidity constraint. In practice,
when a crease pattern is designed, it usually requires its
designer to create a physical copy to verify that a rigid
folding motion does exist to bring the crease pattern to a
rigid goal configuration. This process can often be costly
and time consuming.

This paper models rigid origami as a kinematic system
with closure constraints. Our ideas for addressing both of
these rigid foldability issues include: adaptive randomized
search and folding path reuse. Specifically, we propose a
deformation bounded folding planner (in Section 4) that
can ensure the rigidity of the origami during continuous
folding motions; such planning has not been achieved
before in the community. Given a tessellation formed
with repetitive crease patterns, we further take advan-
tage of its symmetry to reduce the degrees of freedom
(DOF). Our experimental results show strong evidences
that this strategy can significantly speed up the com-
putation (in Section 5). We further propose the idea
of essential crease pattern in Section 5.2. Fig. 1 shows a
folding sequence of a 11×11 Miura origami (220 DOF,
with <1% deformation) found by the proposed method
within 1.7 seconds1. Examples and results of folding
larger tessellations can be found in Section 5.

Our planner requires the crease pattern for computing
the folding map. In Section 6 we propose a novel al-
gorithm to obtain the crease pattern of a rigid folded
origami from an unknown crease pattern. This allows
the input of our system from crease patterns extended
to rigid origamis in arbitrary configurations.

2 Related Work

Planning under closure constraints. There have been
many methods proposed to plan motion for articulated
robots under closed-chain constraints [11, 12, 13, 14].
Interestingly, we see many similar ideas used in both
closed-chain systems and origami folding. For example,
gradient decent was used by [8] for rigid origami sim-
ulation and by [11] for generating valid configuration
of a closed-chain system. Another example is inverse
kinematics, which plays the central role both in Balk-
com’s simulator [9] and in constructing the so-called
kinematic roadmap [13, 15] for capturing the topology of
free configuration space. Tang et al. [16] proposed an ef-
ficient sampling-based planner for spatially constrained
systems. By sampling in the reachable distance space

1All timing data reported in this paper are collected on a 2012
Macbook Pro laptop with a 2.9GHz Intel Core i7 CPU and 16GB RAM.

in which all configurations lie in the set of constraint-
satisfying subspaces and using a local planner, they can
significantly reduce the computation time for finding a
path.

Planning and simulating origami motion. Miyazaki et
al. [6] simulated origami folding by a sequence of simple
folding steps, including bending, tucking in, and folding
up in 1996. It is easy to reconstruct an animation from a
sheet of paper to the final model. However, the simplic-
ity of folding steps limits the types of origami models
that could be represented in the system. Consequently,
this method is not suitable for many complex origami
models whose folding process cannot be represented as
simple folding steps such as the Miura pattern shown in
Fig. 5(a). Song et al. [17] presented a PRM based frame-
work for studying folding motion. However, their kine-
matic representation of origami is a tree-structure model
whose folding angle of each crease line is independent
of other crease lines. Although a tree-structure model
greatly simplifies the folding map that can be easily de-
fined along the path from base to each face, this model
is not applicable to represent the majority of origamis,
such as the one shown in Fig. 5(a), due to their closure
constraints. Balkcom [9] proposed a simulation method
based on the ideas of virtual cutting and combination
of forward and inverse kinematics using a rigid origami
model. Although this approach is computational effi-
cient, the correctness of mountain-valley assignment for
each crease is not guaranteed, i.e., a mountain fold can
become a valley fold or vice versa. Tachi [8] proposed an
interactive simulator for rigid origami model (known as
Rigid Origami Simulator (ROS)) which generates folding
motion of origami by calculating the trajectory by pro-
jection to the constrained space based on rigid origami
model, global self-intersection avoidance and stacking
order problems are not considered in his work. An et
al. [2] proposed a new type of self-reconfiguration sys-
tem called self-folding sheet. They first construct the cor-
responding folded state for a given crease pattern and
angle assignment then continuously unfold the paper
using local repulsive energies (via a modification of ROS
[8]). By reversing the unfolding sequence, they obtained
the path starting from a flat sheet and ending with the de-
sired folded state. Akitaya et al. [18] proposed a method
for generating folding sequences of origami, however,
their system can only handle flat-foldable origami. More
recently, Xi and Lien [19] proposed a randomized search
algorithm via nonlinear optimization to find the inter-
mediate folding steps which guarantees self-intersection
free, however, the motion it found can lead to arbitrary
deformation.
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3 Preliminaries: Rigid Origami
Model

3.1 Crease Pattern

In this paper, we use crease pattern, a straight-edged
graph embedded in the plane, to represent the rigid
origami model. Fig. 2 shows the crease patterns of the
origami tessellations used in our experiments (in Sec-
tion 5). An edge of this graph correspond to the location
of a crease line in an unfolded sheet. A crease line can
be either mountain folded or valley folded. A mountain
fold forms a convex crease at top with both sides folded
down. On the other hand, a valley fold forms a concave
crease.

Real & Virtual Vertices Vertices in crease pattern can be
categorized into two groups: real vertices and virtual
vertices. Vertices on the boundary of a pattern are con-
sidered as virtual vertices and they cannot act as witness
vertices for the purpose of computing folding map. Us-
ing the folding map of a given configuration, we can
instantaneously fold a crease pattern to a folded shape.
All other vertices are considered as real vertices. For ex-
ample, vertices v1, v2, v3 and v4 are the only real vertices
in Fig 5(a) and all the other vertices are virtual vertices.

(a) 4×4 Miura (b) 4×4 Quad

(c) 4×6 Waterbomb (d) 12×14 Waterbomb

Figure 2: Crease patterns used in the experiments. The
mountain creases are shown as solid lines in red, valley
creases are show as dashed lines in blue.

Crease Lines We use l(i,j) to denote the crease line that
connects vertex vi and vj in which at least one vertex
should be real. Boundary edges in the crease pattern
are not considered as crease lines. Each crease line l(i,j)
is associated with a plane angle α(i,j) which is the angle
between −→vivj and [1, 0]T (x-axis) and a folding angle ρ(i,j)
which equals to π minus the dihedral angle between
two faces sharing the crease line l(i,j). The value of ρ is
bounded in [-π, π] to avoid adjacent faces penetrating
each other.

Faces We use F(i,j,...) to refer to a face in the crease pattern,
where {vi, vj, ...} are its vertices. The crease line l(i,j)
belongs to two faces F(i,j,...) and F(j,i,...).

For a non-triangular crease pattern, we will triangulate
it first, newly added diagonals are called virtual edges
whose folding angles should always be zero otherwise
the panel will be bended.

3.2 Configuration

We use the folding angles of all crease lines to represent
the configuration of an origami model. For an origami
with n crease lines, its configuration is represented as
C = [ρ(i1,j1), ρ(i2,j2), · · · , ρ(in ,jn)]

T . Given a configuration
C, we can classify C according to its foldability and feasi-
bility.

Foldability For a real vertex vi in a multi-vertex crease
pattern, let Ai be the 4 × 4 matrix which translates a
point in <3 by vi. Let B(i,j) be the 4× 4 matrix in ho-
mogeneous coordinates which rotates around z-axis for
plane angle α(i,j), and let C(i,j) be the 4 × 4 matrix in
homogeneous coordinates which rotates around x-axis
for folding angle ρ(i,j). Then the 4× 4 folding matrix
of counter-clock-wisely crossing crease line l(i,j) with
witness vertex vi is χ((i,j),i) = AiB(i,j)C(i,j)B

−1
(i,j)A−1

i .

Let {l(i,j1), l(i,j2), ... , l(i,jci )
} be the crease lines incident

to vi, ordered by their plane angles α(i,j), where ci is the
number of crease lines incident to vi. If we pick F(i,jci ,...)

as F0 and fix it in the xy-plane, we define the local fold-

ability matrix for real vertex vi as L(vi) =
ci
∏

t=1
χ((i,jt),i).

Finally, the necessary condition of foldability is:

L(vi) = I, ∀vi (1)

This condition for multi-vertex rigid origami was first
discovered by Balcastro and Hull in 2002 [7].

Feasibility There are several properties that an origami
rigid folding should have: (1) unstretchable, (2) flat (pla-
nar) for all faces, and (3) free of self intersection. A fold-
able configuration only guarantees the first two proper-
ties. In order to check if C is free of self intersection, we
need a folding map for each face. A folding map is a func-
tion that maps a point in <2 to the corresponding point
of folded state in <3 for a given foldable configuration.

4 Folding via Adaptive Random-
ized Search

Searching for a valid folding motion of an origami tessel-
lation is difficult because of its highly constrained nature
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and high dimensional configuration space. In particular,
there are n closed-chain constraints for an origami with
n real vertices. These constraints make most (if not all)
existing probabilistic motion planners impractical. In
[20] we show that for rigid origami with closure con-
straint, the portion of free space is near to zero even
certain amount of deformation is allowed.

In this paper, we extend FROCC [19] which uses an adap-
tive randomized search with nonlinear optimization.
FROCC samples a random configuration Crand around
current configuration Cτ and pushes Crand to a foldable
configuration C∆ via nonlinear optimization (NLOpt). If
C∆ is feasible and closer to the goal, it then replaces Cτ

with C∆ and keep doing so until goal is reached. FROCC
works well in practice, however, it also has several issues
that we are trying to address in this paper.

Objective Function Intuitively, because each real vertex
of a foldable configuration must satisfy the constraint
in Eq. (1), for a given real vertex vi, we want the lo-
cal foldability matrix L(vi) to be as close to an identity
matrix I as possible. However, the objective function
F(C) = ∑i |L(vi)− I| used by FROCC could be easily
trapped at local minima. In this paper, we updated the
objective function to Eq. (2).

F(C) = max
i
|L(vi)− I| (2)

If L(vi) 6= I, deformation will be introduced, in Eq. (2)
we try to minimize the maximum deformation which
works better than the original one.

Deformation Bounded Search (DBS) During random-
ized search, NLopt finds an optimal configuration C
around Cτ , but the value of F(C) in Eq. (2) may be none
zero. This is because local-foldable configuration might
not exist around Cτ or NLopt is not able to find it within
given iterations. Consequently, none-zero F(C) leads
to deformation in folded oragami. However, directly
bounding F(C) [19] does not give us a quantitative rigid-
ity measure. To illustrate this, in Fig. 3, we show defor-
mation measured in terms of the stretch and shrinkage
of edges given that F(C) < 0.1. We can see that with
the increase of size of the crease pattern, though their
folding paths still look identical (with the naked eye),
the edge deformation is quite dramatic (increased from
≈1.5% in 3×3 Miura to ≈10% in 5×5 Miura).

Thus, we propose a deformation bounded search (DBS)
that checks the maximum amount of deformation mea-
sured by the change of edge length including virtual
edges which is defined as (||e f olded|| − ||eorg||)/||eorg||.
In DBS, we use the same objective function in Eq. (2) but
only accept configurations that are within the deforma-
tion bound given by the user. The folding path found
by DBS is guaranteed to be deformation bounded and
self-intersection free, which has not been achieved be-
fore in the community. Folding paths for the 3x3 Miura

crease pattern with different deformation bounds found
by the proposed method are shown in Fig. 4. We can see
that there are huge differences between assigned folding
angles and measured ones due to deformation. Some
virtual edges have more than 15◦ folding angles which
means some panels have been bended in order to re-
duce the deformation which is not tolerable in practice.
Theoretically, they should be the same if the configu-
ration is foldable and the origami will be deformation
free. Within 1% deformation, they become identical (see
Fig. 4(d) and Fig. 4(c)). Note that, instead of simply filter-
ing out configurations with large deformation, we have
also tried incorporating maximum deformation in the
objective function, but the optimization process is often
trapped in local minima due to the higher complexity of
the objective function.

-1

-0.5

0

0.5

1

1.5

30 60 90 120 150 180

D
e
fo

rm
a
ti
o
n
 (

%
)

Folding Sequence(a) 3×3 Miura

-10
-8
-6
-4
-2
0
2
4

30 60 90 120 150 180

D
e
fo

rm
a
ti
o
n
 (

%
)

Folding Sequence(b) 5×5 Miura

Figure 3: Edge deformations during the folding process
by requiring F(C) < 0.1 for Miura crease patterns. Left:
Crease patterns. Right: Edge deformations.

Running times against various deformation upper
bounds are shown in Table 1. As we can see, when lower
the deformation tolerance, our method takes longer time
to find a valid path which is expected. The main com-
putation time is from the increase in the number of it-
erations needed to find an accurate enough foldable
configuration in NLopt.

Large Origami Tessellation Though FROCC works well
in lower dimensional space (<10), with the increasing of
the complexity of the crease pattern (e.g., large origami
tessellation), it becomes harder for FROCC to find a valid
path. Detailed discussion regarding this issue will be
given in Section 5.
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Figure 4: Assigned and measured folding angles under
different deformation upper bound for folding a 3x3
Miura crease pattern. Left: Assigned folding angles
computed by NLopt. Right: Measured folding angles.
These are the folding angles measured on the origami
after folded with the assigned angles.

Table 1: Planning Time v.s. Deformation Upper Bound
Model DOF DUB MI Time (s)

4×4 Miura 24

10% 100 0.14
5% 100 0.18
2% 1000 1.51
1% 1000 3.17

4×4 Quad 40

10% 200 0.34
5% 200 0.49
2% 1000 2.42
1% 2000 12.41

DUB=Deformation Upper Bound, MI=Maximum Iteration for NLopt. The
maximum iteration for NLopt is set to the minimum value that could make the

planner achieve over 90% success rate.

5 Folding Large Origami Tessella-
tion

A tessellation is a type of crease pattern that can usually
be viewed as an arrangement of smaller repetitive crease
patterns. As a result, the degrees of freedom of a tessel-
lation is usually very large (758 for a 12×22 Waterbomb
and 1680 for a 24×24 Miura fold). Finding valid folding
motion for such as tessellation can be extremely time
consuming. In order to speed up the motion planner, we
propose the idea of crease group and essential vertex by
exploiting symmetry in the tessellation in Section 5.1.

Computation reuse is a widely used technique to im-
prove the performance of a robotic system [21, 22]. In
Section 5.2, we propose the idea of reusing folding path
found on the essential crease pattern to fold large origami

tessellation.

5.1 Crease Group and Essential Vertex

Given a large crease pattern (tessellation), crease lines
can be gathered into groups naturally due to symmetry
property. We say that a set of crease lines are in one
crease group if the absolute value of their folding angles
trace out the same folding trajectory. Given the crease
groups, we define essential vertices as a set of real ver-
tices whose incident crease lines collectively cover all
the crease groups. The smallest essential vertices can be
found by solving the set covering problem. An example of
crease groups is shown in Fig. 5, in which crease lines
belong to the same crease group are shown in the same
color. From Fig. 5 we can see that the 3×3 Miura crease
pattern has only two crease groups: all vertical crease
lines are in one group and all horizontal crease lines are
in another group, even though they have different type
(mountain fold v.s. valley fold). Since any of the real
vertices can cover all the crease groups, the 3×3 Miura
crease pattern has only one essential vertex which could
be v1 or v2 or v3 or v4.

v1 v2 

v3 v4 

v5 

v6 

v7 
 

v8 v9 
 

v10 
 

v11 
 

v12 
 

v13 
 

v14 
 

v15 
 

v16 
 

(a) Crease pattern (b) Crease groups

Figure 5: Crease groups of a 3×3 Miura crease pattern.
Crease lines belong to the same crease group are shown
in the same color.

By gathering crease lines from a large crease pattern into
crease groups, the DOF of the origami can be reduced
from the number of crease lines to the number of crease
groups. Moreover, by identifying essential vertices, we
only need to check the local foldability (Eq. (2)) on essen-
tial vertices, a much smaller subset of real vertices than
the number of all the real vertices. Table 2 reports the
size of crease groups and essential vertices of 6 crease
patterns. As we can also see in Table 2, using symmetry
and essential vertex significantly reduces the computa-
tion time for finding a valid folding motion. We also
tested the running with and without collision detection.
From Table 2 we can see when we use full DOF for plan-
ning, the majority of the time is spent on finding valid
configuration, collision detection takes only about 2%
of the running time for folding the 5× 5 Miura crease
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pattern. However, when we use symmetry property and
essential vertex, the running time reduced significantly,
collision detection (with almost the same amount of com-
putation) then dominates the running time which takes
about 83% on average.

5.2 Reusing Folding Path

Given a crease pattern (tessellation), if this crease pattern
is rigid foldable, it is expected that the folding angles of
all crease lines in the same crease group remains identical
even when planning is done using the full DOF. Further
more, the trajectories are expected remain identical when
folding a smaller but same type tessellation as shown in
Fig. 6.
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Figure 6: Folding paths found without using symmetry
information.

This give us the idea of reusing the folding path found
on smaller crease pattern to fold the large one which
is much more computational efficient. With the crease
group and essential vertex in mind, here we define the
concept of essential crease pattern which is the smallest
crease pattern that contains all essential vertices as real
vertices. We first find a folding path whose deformation
is enough low on the essential crease pattern that could
satisfy the deformation criteria when folding the larger
pattern with it since the deformation will be amplified
with the increase of size of the crease pattern. Then the
folding path is applied to the original crease pattern.

An example of reusing folding path for another rigid-
foldable crease pattern Waterbomb is shown in Fig. 7.
The configuration of the folded tube is from [23] in which
the authors showed that the tube is in fact continuous
rigid foldable and our method confirms that the folding
process is indeed rigid. As we can see from Fig. 7, though
the deformation by reusing folding path is about 10x
larger than the one on the essential crease pattern, it
is still within the user given deformation upper bound
(1%).

Note that, when reusing folding path, the deformation
will be scaled up according to crease pattern size. We
observe that this increasing in deformation is much more

(a) 4×6 (b) 12×14
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Figure 7: Reusing folding path. (a) Folded shape of
4×6 waterbomb crease pattern shown in Fig. 2(c). (b)
Folded shape of 12×14 waterbomb crease pattern shown
in Fig. 2(d) by reusing folding path (c). (c) Folding path
found on the essential crease pattern Fig. 2(c). (d) Edge
deformation when folding Fig. 2(c). (e) Edge deforma-
tion when folding Fig. 2(d) by reusing the folding path
(c).

dramatic for non-rigid-foldable crease pattern. An ex-
ample of non-rigid-foldable crease pattern is shown in
Fig. 8. Folding a 24×24 Quad crease pattern shown in
Fig. 8(a) by reusing a 0.1% deformation upper bound
folding path found on its essential crease pattern shown
in Fig. 8(b) gives us a large (> 400%) deformation shown
in Fig. 8(g) due to folding map inconsistency. Thus, we
can determine the rigid-foldability of a given symmetric
crease pattern by reusing path found for its essential
crease pattern.

Proposition 5.1 If a crease pattern with a goal configuration
is symmetrically rigid foldable, then the folding process of that
crease pattern is deformation bounded when it is folded by
reusing an arbitrary deformation bounded folding path found
on its essential crease pattern.

6 Unfolding Rigid Folded Shapes

Note that the folding map is applied on the crease pat-
tern, thinking about the scenario that given a 3D shape
that was rigid folded from some unknown crease pat-
tern. Without knowing the crease pattern beforehand,
our planner is not able to fold or unfold the origami. To
address this problem, we propose a novel algorithm to
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Table 2: Path Planning Time using Symmetry.
Model RV/EV SYM EV DOF MI Time (sec) CD (%)

3×3 Miura 4/1
× × 12 25 0.037 27.03
◦ × 2 5 0.016 56.25
◦ ◦ 2 5 0.014 64.29

5×5 Miura 9/1
× × 40 500 1.681 2.02
◦ × 2 5 0.098 81.63
◦ ◦ 2 5 0.082 85.37

24×24 Miura 529/1
× × 1680 N/A∗ N/A∗ N/A∗

◦ × 2 100 35.278 78.32
◦ ◦ 2 100 32.402 99.51

4×6 Waterbomb 15/3
× × 50 5 0.040 77.50
◦ × 4 5 0.037 81.08
◦ ◦ 4 5 0.034 88.24

8×10 Waterbomb 63/3
× × 182 5 0.406 79.80
◦ × 4 5 0.332 90.36
◦ ◦ 4 5 0.310 96.45

12×22 Waterbomb 231/3
× × 758 5000 499.048 11.27
◦ × 4 5 3.893 91.75
◦ ◦ 4 5 3.160 97.59

Note that the running time were obtained under 5% deformation upper bound. RV=Real Vertex, EV=Essential Vertex, SYM=Symmetry, MI=Maximum Iteration,

CD=Time cost for Collision Detection. The symbols ◦ and ×, in the columns of SYM and EV, indicate if symmetry and essential vertex are used or not. *The planner

failed to find a valid path within the time limit due to high DOF.

unfold a rigid folded 3D shape to its crease pattern as
shown in Algorithm 1, which can unfold the 3D shape
instantaneously while the intermediate motion remains
unknown. The target folding angle for each crease line
can be measured from the folded shape. An example of
unfolded Yoshimura crease pattern is shown in Fig. 9(f)
which is unfolded from a half-folded shape shown in
Fig. 9(d).

Proposition 6.1 Any rigid folded shape can be flattened to
its crease pattern instantaneously.

7 Compare with Existing Works

Although there have been several existing works on sim-
ulating or planning motion of rigid origami [6, 9, 2], most
of these works are only applicable to specific type of
rigid origami. Tachi’s Rigid Origami Simulator (ROS) [8]
provides the most general solution so far and is the only
publicly available software the we are aware of. Con-
sequently, we have tested ROS extensively using the
crease patterns shown in the paper. However, we found
that it is difficult to provide a meaningful comparison
to our methods due to that both approaches focus on
different objectives. The main objective of this paper
is to find rigid folding path from one configuration to

Algorithm 1 Unfold Rigid Folded Shape to Crease Pat-
tern
Input: Rigid folded shape S (triangular mesh)
Output: Crease pattern CP of S

1: Pick an arbitrary face from S as F0

2: Place F0 onto xy-plane arbitrarily
3: CP ← {F0}
4: while not all faces of S were attached to CP do
5: Pick a face F from S , s.t. at least one edge of F

was attached to CP
6: if One edge of F was attached to CP then
7: Attach F to CP without overlapping CP .

Two ways to attach F to CP , one of them causes
overlapping.

8: else if Two edges of F was attached to CP then
9: Attach the last edge of F to CP

10: else
11: Do nothing . All three edges of F were

attached to CP , position of F is determined.
12: end if
13: CP ← CP ∪ Fk

14: end while
15: return CP
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Figure 8: Non-rigid-foldable crease pattern. (a) 24×24 Quad crease pattern. (b) Essential crease pattern of (a). (d)
Folded shape of (a). (c) Folded shape of (b). (e) Folding path found on (b). (f) Edge deformation when folding (b). (g)
Edge deformation when folding (a) by reusing folding path (e).

(a) Miura (b) ROS (c) Our method

(d) Yoshimura (e) ROS (f) Our method

Figure 9: Comparisons to ROS. Top: (a) Half-folded state
of Miura crease pattern. (b) Maximum folded state from
ROS. This configuration found by ROS is not collision
free. (c) Folded by our method. Bottom: (d) Half-folded
state of Yoshimura crease pattern. (e) Maximum un-
folded state from ROS. (f) Unfolded by our method.

another while ROS focused on folding a crease patten
as much as possible (and usually this means as flat as
possible). Moreover, ROS does not guarantee that the
folding motion is rigid and collision free. Visual com-
parisons with results obtained from ROS are shown in
Fig. 9. Self-intersection can be found in Fig. 9(b).

8 Conclusions

In this paper, we proposed a randomized approach for
planning the motion of rigid origami. We used a non-
linear optimization method to find a valid (deforma-
tion bounded and collision free) configuration around
a given sample configuration. The experimental results
shows that our planner could efficiently and effectively
find valid path for various types of rigid origami that
existing tools fail to fold. Taking symmetry into consid-
eration and reusing folding path found on the essential
crease pattern enable us to fold large origami tessellation
efficiently.

The proposed randomized rigid origami folding method
is designed to assist the foldability analysis of self-
folding origami. Self-folding origami using active-
materials usually have many kinematic and dynamic
constraints, such as maximum folding angles, and may
often requires multiple folding phases in order to fold itself
to the desired state, see details in [24]. User defined mo-
tion criteria can be easily introduced into the proposed
framework. For example, our method supports multi-
phase folding by given a sequence of valid intermediate
configurations {C1, C2, ..., Cn}.

Limitations and Future Work Even through our prelim-
inary results are encouraging, our method still has much
room for improvement and many open questions to be
answered. For example, given a crease pattern without
a goal configuration, how to determine its crease groups.
Given a desired deformation upper bound of a large
crease pattern, how can one determine the deformation

8



upper bound required for its essential crease pattern.
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