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Abstract. This paper deals with the inference problems in data warehouses and
decision support systems such as on-line analytical processing (OLAP) systems.
Even though OLAP systems restrict user accesses to predefined aggregations,
the possibility of inappropriate disclosure of sensitive attribute values still ex-
ists. Based on a definition of non-compromiseability to mean that any member
of a set of variables satisfying a given set of their aggregates can have more than
one value, we derive sufficient conditions for non-compromiseability in sum-only
data cubes. Specifically, (1) the non-compromiseability of multi-dimensional ag-
gregates can be reduced to that of one dimensional aggregates, (2) full or dense
core cuboids are non-compromiseable, and (3) there is a tight lower bound for the
cardinality of a core cuboid to remain non-compromiseable. Based on those con-
ditions, and a three-tiered model for controlling inferences, we provide a divide-
and-conquer algorithm that uniformly divides data sets into chunks and builds a
data cube on each such chunk. The union of those data cubes are then used to
provide users with inference-free OLAP queries.

1 Introduction

Decision support systems such as On-line Analytical Processing (OLAP) are becom-
ing increasingly important in industry. These systems are designed to answer queries
involving large amounts of data and their statistical averages in near real time. It is
well known that access control alone is insufficient in eliminating all forms of dis-
closures, as information not released directly may be inferred indirectly from answers
to legitimate queries. This is known as timéerence problemAn OLAP query typi-

cally consists of multiple aggregations, and hence vulnerable to unwanted inferences.
Providing inference-free answers to sum-only data cube style OLAP queries while not
adversely impacting the performance or restricting the availability in an OLAP system
is the subject matter of this paper.

The inference problem has been investigated since 70’s and many inference control
methods have been proposed for statistical databases. However, most of those methods
become computationally infeasible if directly applied to OLAP systems. OLAP appli-
cations usually require short response time, and OLAP queries usually aggregate a large
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amounts of data [21, 16]. Because most existing inference control algorithms have run
times proportional to the size of queries or data set, their impact upon performance
renders them impractical for OLAP systems.

While arbitrary queries are common in statistical databases, OLAP queries usu-
ally comprise of well-structured operations such as group-by, cross-tab and sub-totals.
Those operations can conveniently be integrated with data cube operator and various
data cube operations, such as slicing-dicing, roll up and drill down [20]. We will show
how the limited formats and predictable structures of the OLAP queries as well as the
multi-dimensional hierarchical data model of OLAP systems can be exploited to sim-
plify inference control.

Table 1 shows a small two-dimensional data set about monthly employee salaries.
Individual salary should be hidden from users, and hence has been replaced with the
symbol?. The symbol N/a denotes null value for inapplicable combinations of month
and employee, which is known to uset#Assume subtotals are allowed to be released
to users through OLAP queries. Inference problem occurs if any of the values repre-
sented by symbdl can be derived from the subtotals. No value in the first two quarters
can be inferred, because infinitely many different values may fit in 2agimbol with
the subtotals satisfied. For the third quarter, Mary’s salary in September can be inferred
from the subtotals of September salaries because she is the only employee with a valid
salary for September. For the fourth quarter, by subtracting Bob’s and Jim'’s fourth quar-
ter salaries ($4300 and $3000 respectively) from the subtotals in October and Novem-
ber ($7100 and $4100 respectively) Alice’s salary for October can be computed to be
$3900.

Based on a definition of non-compromiseability to mean that any member of a set
of variables satisfying a given set of their aggregates can have more than oné,value
we derive sufficient conditions for non-compromiseability in sum-only data cubes: (1)
the non-compromiseability of multi-dimensional aggregates can be reduced to that of
one dimensional aggregates, (2) full or dense core cuboids are non-compromiseable,
and (3) there is a tight lower bound for the cardinality of a core cuboid to remain non-
compromiseable. Based on our results, and a three-tiered model for controlling infer-
ences, we provide a divide-and-conquer algorithm that uniformly divides data sets into
chunks and builds a data cube on each such chunk. The union of those data cubes are
then used to provide users with inference-free OLAP queries.

The rest of the paper is organized as follows. Section 2 reviews existing inference
control methods proposed in statistical databases and OLAP systems. Section 3 formal-
izes sum-only data cube and proves sufficient conditions for its non-compromiseability.
On the basis of a three-tiered model those conditions are integrated into an inference
control algorithm in Section 4. Section 5 concludes the paper.

Y In general, data values are known through various typextdrnal knowledggknowledge
obtained through channels other than query.
2 In the settings of this paper, each variable can have either one value or infinitely many values.



[Quartef Month [[Alice[ Bob] Jim [Mary[|Sub Tota)

1 January || ? ? ? ? 5500
February|| ? ? ? ? 5500

March ? ?|? ? 5500
Sub Total|| 3000/3000 4500 6000

2 April 20?2 ?? 6100
May ? | Na| ? ? 6100
June 20?2 ?? 4100
Sub Total|| 4500133004500 4000
3 July 20?2?27 6100

August ? ? ? ? 6100
September N/a | N/a| N/a| ? 2000
Sub Total|| 3500/2200 2500 6000

4 October || ? ? ? | N/a 7100
November| N/a| ? ? | N/a 4100
Decembell ? | N/a|N/a| ? 4100
* Bonus ? | N/a| N/a| ? 6000
Sub Total|| 7000[4300 3000 7000

Table 1. An Example Data Cube

2 Related Work

Inference control has been extensively studied in statistical databases as surveyed in [14,
1,15]. Inference control methods proposed in statistical databases are usually classified
into two main categorieggstriction basedechniques angerturbation basedech-
niques. Restriction based techniques [19] include restricting the sizguwra sefi.e.,
the entities that satisfy a single query), overlap control [17] in query sets, auditing all
gueries in order to determine when inferences are possible [11, 8, 23, 25], suppressing
sensitive data in a released statistical tables [12], partitioning data into mutually exclu-
sive partition [9, 10], and restricting each query set to range over at most one patrtition.
Perturbation based technique includes adding noise to source data [30], outputs [5, 26],
database structure [28], or size of query sets (by sampling data to answer queries) [13].
Some variations of the inference problem have been studied lately, such as the infer-
ence caused by arithmetic constraints [7, 6], inferring approximate values instead of
exact values [25] and inferring intervals enclosing exact values [24].

The inference control methods proposed for statistical databases generally sacrifice
efficiency for the ability of controlling the inference caused by arbitrary queries, which
is essential to general databases. However, this sacrifice is not desirable for OLAP sys-
tems, because in OLAP systems near real time response takes priority over the general-
ity of answerable queries. Hence most of those methods are computationally infeasible
in OLAP systems. As an example, Audit Expert [11] models inference problem with a
linear systemAx = b and detects the occurrence of inference by transformingrithe
by n matrix A (corresponding ten queries onn attribute values) to its reduced row
echelon form. The transformation has a well-known complexit@ 6f2%n), which is



prohibitive in the context of data warehouses and OLAP systems siraredn can be
as large as a million.

Our work shares similar motivation with that of [17], i.e., to efficiently control in-
ference with the cardinality of data and queries, which can be easily obtained, stored
and maintained. Dobkin et al. gave sufficient conditions for the non-compromiseability
of arbitrary sum only queries [17]. The conditions are based on the smallest number
of queries that suffices to compromise the individual data. Our work deals with multi-
dimensional data cube queries. The fact that data cube queries are a special case of
arbitrary queries implies better results.

To the best of our knowledge, inference control for OLAP systems and data ware-
houses are limited to [3, 2,18, 27]. They all attempt to perturb sensitive values while
preserving the data distribution model. Hence the classification or association rules ob-
tained before or after the perturbation remains the same. Those works are application-
specific, that is, the sole purpose of data analysis is limited to classification (association
rule mining). We do not have this restriction. Moreover, we do not use perturbation in
this paper.

3 Cardinality-based Non-compromiseability Criteria for Data
Cubes

This section defines our model for sum-only data cubes and formalizes compromiseabil-
ity. We then derive cardinality-based sufficient conditions for non-compromiseability in
two cases.

3.1 Problem Formulation

In our model, &-dimensionatlata cubeconsists of oneore cuboidand severahggre-

gation cuboidsIn addition, we use aaggregation matrixo abstract the relationship
between them. Eadtimensionis modeled as a closed integer interval. The Cartesian
product of thek dimensions is calle€ull core cuboid Each integer vector in the full

core cuboid is @uple A core cuboidis any subset of the full core cuboid that includes

at least one tuple for each value chosen from each dimension. This allow us to uniquely
identify the size of each dimension for a given core cuboid. Definition 1 formalizes
these concepts.

Definition 1 (Core Cuboids and Slices).

Given a set ok integersD; satisfyingD; > 1 forall 1 < ¢ < k. A k-dimensional
core cuboid is any subsét of ITF_, [1, D;] satisfying the property that for any; €
[1, D;] there exist k — 1) integersz; € [1,D;] forall 1 < j < kandj # i, such
that (z1,...2i—1, %4, Tiv1, ... 2x) € S. C. denotes a core cuboid. Each vector C.
is referred to as a tuple. Further, thé" element of vector € C., denoted by][i], is
referred to as the'” dimension of. We say thatl7*_,[1, D;] is the full core cuboid
denoted by';. We say a tuple is missing from the core cubod@. if ¢t € Cy \ C.. The
subset of”,. defined by{t |t € C.,t[i] = j} for eachj € [1, D;] is said to be the*"
slice ofC.. on thei*" dimension, denoted b§;(C.., j). If Pi(C., j) = {t |t € C},t[i] =
J,7 €1, D;]}, we say that?; (C., j) is a full slice.



As an illustration, the fourth quarter data given in Table 1 is modeled in Table 2.
It has two dimensions: month (dimension 1) and employee name (dimension 2). Both
have four different values that are mapped to the integer int¢tyd). The full core
cuboidCy is [1,4] x [1,4]. The core cuboid’. contains totally nine tuples and seven
tuples are missing fror@', (shown as N/a irC..).

To define aggregates of a data cube, we follow [20] to augment each dimension with
a special valu@&LL, for which we use symbol *. Eachiggregation vectors similar to
a tuple except that it is formed with the augmented dimensions. An aggregation vector
selects a set of tuples in core cuboids with its * values, which formgtgegation set
All aggregation vectors having * value in the same dimensions forraggmegation
cuboid The concepts of aggregation vector, aggregation cuboid and aggregation set are
formalized in Definition 2.

Definition 2 (j-* Aggregation Vectors, Cuboids and Data Cubes).

A j-* aggregation vector is a k dimensional vector satisfyinge I7F_, ([1, D;] U
{xpHand| {i : t}i]] = x for 1 < i < k} |= j.If t[i] = x, then we say that the
it" element is a *-elements, and others are called non *-elements. A j-* aggregation
cuboid is a set of aggregation vectarssuch that for any, t' € C, {i : t[i] = *} = {i :

t'li] = x} and| {i : t[i] = *} |= j. The aggregation set of an j-* aggregation vector
t is defined aqt’ : ¢’ € C. such that'[i] = t[i],Vit[i] # *}. We use the notation
Qset(t) for the aggregation set af The aggregation set of a set of aggregation vectors
S is defined as the union @jset(t) for all t € S. We use notatiord)set(.S) for the
aggregation set of.

A data cube is defined as a pair C.., S,;; >, whereC.. is a core cuboid, and,;;
is the set of all j-* aggregation cuboids, for all< j < k.

As an illustration, the subtotals of fourth quarter data given in Table 1 is mod-
eled in Table 2. Each subtotal is represented as an aggregation vector with * value.
For example(1, %) represents the subtotal in October. The aggregation @t &f is
{(1,1),(1,2),(1,3)}. The set of four aggregation vectof&l, ), (2, %), (3, %), (4,*)}
form an aggregation cuboid since they all have * value in the second dimension.

| Hl (AI)[2 (Bob)[S (Jim)[4 (Ma)HS (Suij

1 (Oct) (1,1)] (1,2) | (1,3) | N/a @

2 (Nov) N/a | (2,2) | (2,3) | N/a 2,%

3(Dec) ||(3,1)] N/a | N/a | (3,4) | (3%

4 (Bonus)| (4,1)| N/a | N/a | 44) || 4%

BEEWDH[EDH] ¢2) [¢3) [ A ¢ ]
Table 2. Illustration of Data Cube

To abstract the relationship between the core cuboid and aggregation cuboids in a
given data cube, we defirsggregation matrixEach element of aggregation matrix is
associated with a tuple and an aggregation vector. An element of one means the tuple



is in the aggregation set of the aggregation vector, zero otherwise. We assign the tuples
in Cy and C in dictionary order, the aggregation cuboidsSg; in ascending order

on the number of *-elements and descending order on the index of the *-element. This
assignment enables us to refer to tHetuple in Cy asCy[i] (similarly for C., Sau

or their subsets). We us¥ i, j] for the (i, 7)*" element of matrix\/. The concept of
aggregation matrix is formalized in Definition 3.

Definition 3 (Aggregation Matrix).

The aggregation matrix of the aggregation cubéidon the core cuboid’. is de-
fined as the followingm x n) matrix M¢, ¢ (or simplyM whenC, andC are clear
from context).

L, if C¢[j] € Qset(C[i]);

Mc. cli,j] = .
ol 0, otherwise.

We define the aggregation matrix §fon C.. as the row block matrix with thg”
row block as the aggregation matrix of tifé aggregation cuboid irb.

We useb; to represent the set of all 1-* aggregation cuboids for a giggnand M,
the aggregation matrix 0§, onC, (thatisMc, s, ), referred to as the 1-* aggregation
matrix.

The concept of aggregation matrix and compromiseability is illustrated in Table 3.
By representing individual salary with variabte we get linear system/¢, g, - X =
B. It has at least one solution sind@@ are calculated from the "real” salary values,
which must satisfy the linear system. By linear algebra theory [22], eaclan have
either a unique value or infinitely many different values among all the solutions to
Mc, s, X = B. This depends o, g, but not onB (this is not valid if additional
knowledge abouk is learned by users, for example, salaries are non-negative [24, 25,
23]). If anx; has a unigue value among all the solutions then clearly the sensitive value
represented by; was compromised. In this exampie has the value 08900 in any
solution so Alice’s salary for October is compromised. In Definition 4 we formalize the
definition of compromiseability. We distinct two cases of compromiseability, that is, the
trivial case illustrated by the third quarter data of Table 1, and the complementary cases
of the fourth quarter data.

Definition 4 (Compromiseability).

Given a data cube< C,, S,; > and a set of aggregation cuboidsC S, B is
arbitrarily chosen such thaMCC,S.Y — B has at least one solutior is said to
compromise’., if at least one component; of X has the same value among all
the solutions taVl¢, . X = B

1. C, is trivially compromised bys if there is an integei € [1,m] such that the*"
row of M¢, s ise;. Herel < j <n.

2. C. is non-trivially compromised bg if C. is not trivially compromised by.

Itis well-known thatC'. is compromised by if and only if there exists at least one
unit row vectore; (wheree;[i] = 1 ande;[j] = 0 for j # ¢) in any reduced row echelon
form of M¢, s [22]. This yields an alternative definition of compromiseability which
we shall use in the rest of this paper.



[ [1 (Alice)[2 (Bob)[3 (Jim)[4 (Mary)[5 (Sub Total)

1 (Oct) T To T3 N/a 7100
2 (Nov) N/a T4 Ts5 N/a 4100
3 (Dec) Ze6 N/a | N/a 7 4100
4 (Bonus) T8 N/a | N/a To 6000
5 (Sub Total) 7000 | 4300 | 3000 | 7000 -

T1

T2

x3

0
1110000000000000 0 7100
0000011000000000 T4 4100
0000000010010000O0 Ts5 4100
0000000000001001 y 0 __ | 6000
1000000010001000 Te 7000
0100010000000000O0 0 4300
0010001000000000 0 3000
0000000000010001 T7 7000

xs

0

0

T9

Table 3. Equations Formulating the Disclosure of the Core Cuboid Given in Table 2

3.2 Trivial Compromises

In this section, we derive cardinality-based criteria of non-compromiseability in the
trivial case. We have two results. Firstly, full core cuboids cannot be trivially compro-
mised. The second is an upper bound on the cardinality of the core cuboid such that it
is trivially compromised by the set of all 1-* aggregation cuboids. They are stated and
proved in Theorem 1.

Theorem 1. 1. A full core cuboid”; cannot be trivially compromised by any set of
aggregation cuboids.
2. C. istrivially compromised by, if |C.| < 28=!.maz (D1, Do, ..., Dy,) fork > 2

Proof: See the Appendix.

Theorem 1 provides cardinality-based criteria for the two extreme cases, i.e., the
core cuboid is either full or sparse. However, cardinality-based criteria is ineffective
for the case in between. As an example, consider the third quarter data in Table 1,
which is trivially compromised. Without changing the cardinality, evenly distributing
the three “N/a” in three months makes the core cuboid free of trivial compromise. This
invalidates any cardinality based criteria because trivial compromiseability varies for
core cuboids with exactly the same cardinality.



3.3 Non-trivial Compromiseability

In this section, we derive cardinality-based criteria to determine the compromiseability
in the non-trivial case. We have two results. The first is that full core cuboids cannot be
non-trivially compromised. The second is a lower bound on the cardinality of the core
cuboid such that it remains safe from non-trivial compromise. First we have Lemma 1.

Lemmal. 1. C.can notbe non-trivially compromised by any single cuboid.
2. If C. cannot be compromised I8, then it cannot be compromised By;;.
3. Foranyintegerg and Dy, D, ..., D, that satisfyD; > 4 for 1 < i < k, there is
a k-dimensional data cube C., S,;; >, with integer boundarie®;, such thatC,
is non-trivially compromised b¥;.

Proof: See the Appendix.

Because of the second claim of Lemma 1, itis sufficient to safeguard the core cuboid
from 1-* aggregation cuboids. The last condition in Lemma 1 shows that it is impossible
to obtain a criteria for preventing non-trivial compromiseability by only looking at the
dimension cardinalities.

Theorem 2 (Non-trivial Compromiseability).

1. Cy cannot be non-trivially compromised I8y.

2. For any integers: and D;, there exists a k-dimensional data cukeC., S,; >
satisfying|Cy — C.| = 2D; + 2D,, — 9 such thatC.. is non-trivially compromised
by Sy, whereD,; and D,,, are the least two among;.

3. If|Cy — C.| < 2D, + 2D, — 9, thenC, cannot be non-trivially compromised.

Proof: See the Appendix.

The first claim in Theorem 2 guarantees the non-trivial compromiseability of full
core cuboid. The second and third claims give a tight lower bound on cardinality for a
core ¢ uboid to remain free of non-trivial compromise. The second claim also implies
that no cardinality based criteria can be derived for sparse core cuboids (a core cuboid
is sparse if its cardinality goes under the lower bound).

Corollary 1 (Non-trivial Compromiseability).
If for anyi € [1, k], there existg € [1, D;] such that P;(Cy, j) — P;(C.,j)| = 0,
C. cannot be non-trivially compromised.

Proof: Follows from the proof of Theorem 2. O
Corollary 1 says full slices on every dimension suffices the non-compromiseability
in the non-trivial case.

4 A Cardinality-based Inference Control Algorithm for Data
Cubes

This section describes an algorithm to control inferences in data cube style OLAP
queries, using the results on compromiseability developed in Section 3. Our algorithm
is based on a three-tired model consisting of core data, pre-computed aggregates and
answerable queries.



4.1 Three-Tiered Inference Control Model

Our three-tiered model consists of three basic components, and two abstract relations
in between, as given below, and illustrated in Figure 1. In addition we enforce three
properties on the model.

1. Three Tiers:
(a) A setof data item®.
(b) A set of aggregationd.
(c) A setof queries).
2. Relations Between Tiers:
(@ Rap CAxD.
(b) Roa € Q x A.
3. Properties:
(@) |4 << |Ql.
(b) There exist partition$, on D and P4 on A, such that for anya,d) € Rap
and(a’,d’) € Rap, d andd’ are in the same chunk @y, if and only if a and
a’ are in the same chunk df,4.
(c) D is not compromised by.

User Queries

Q

Inference Control

Rao
)
DA

Pre-defined Aggregations
(A
R

Fig. 1. Three-Tiered Model for Controlling Inferences

Three-tired inference control model simplifies inference control problem in several
ways. Firstly, since all queries i) are derived from aggregations i it suffices to
ensure the non-compromiseabilityinstead of@Q). This reduces the complexity of in-
ference control due to the first characteristichfSecondly, the second characteristic
of A allows us to adopt a divide-and-conquer approach to further reduce the complexity
of inference control. Thirdly, inference control is embedded in the off-line design of
A andRp, so the overhead of on-line inference control is eliminated or reduced. Al-
though the restriction af) to be derived frond reduces the total number of answerable
queries,A can be designed in such a way that it contains most semantics required by
the application, hence the restricted queries are mostly arbitrary and meaningless with
respect to application requirements.
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Algorithm Ctrl_Inf_Cube
Input: Data Cube< C., Sa1; >, integersD{f € [1,D;]for1 <i < kand0 < j < m;, where
m; is fixed for each and D7 satisfy DY = 1, D] = D;, andD! ™" < D’ for all
1<j<ms.
Output: a set of aggregation$, that do not compromis€’.
Method:
1. LetSa = ¢;
2. For eachk dimensional vectoo € [TF_, [1,m;]
Let Cymp = {t: t € C, Vi € [1,k] t[i] € [DP, DYy,
LetCy, = {t: 3t € Cimp,Vi € [, k] ti] = t'[i] — DY +1};
Let Sa = SaU CtrulInf_Chunk(Cy, [1, D' — D=1 4 1))
3.Return S4.
Subroutine Ctrl_Inf_Chunk
Input: k dimensional core cuboi@?, and thek dimension domainfl, Dj],i = 1,2,...,k
Output: S7,, if it does not compromis€. according to the cardinality-based criteria,
¢ otherwise, wheré,;, is the set of all aggregation cuboids defined@n

Method:
1.1f |Cl] = 0 or|Cy| = |C%|, whereC is the full core cuboid of’",
Return S7,;;
2.1f C/ is trivially compromised by5.;,
Return ¢;

3. LetD;, D,, be the two smallest amon@;;

4.0f | C} — CL|< 2Dy 4 2Dy — 9
Return S7,;;

5.1f for all i € [1, k] there existg € [1, D;] such thal Pi(C%,j) — Pi(Ce,j) |=0
Return S.,;;

6. Return ¢.

Fig. 2. The algorithm of inference control in data cube

4.2 Inference Control Algorithm

The inference control algorithm shown in Figure 2 applies the results given in Section 3
on the basis of our three-tiered model. The algorithm first partitions the core cuboid into
disjointed chunks, which are then passed to the subroQtindnf_Chunk The subrou-

tine checks the non-compromiseability of theb-data cubealefined on this chunk of

data, using the cardinality based criteria. If it is compromised the subroutine returns an
empty set, indicating no aggregation is allowed on the data. Otherwise, the subroutine
returns all the aggregation cuboids of the sub-data cube. The final outcome is the union
of all the sub-data cubes returned by the subroutine. This set of aggregations can then
be used to answer data cube style OLAP queries without inference problem.

Correctness The correctness of the algorithm, that is, the non-compromiseability of
the final result is straight-forward. The subroutine @il Chunk guarantees the non-
compromiseability of each sub-data cube respectively. In addition, the sub-data cubes
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are disjointed, making the non-compromiseability of each of them independent of oth-
ers.

Runtime Analysis: The main routine of the algorithm partitiorfs. by evaluating
the k& dimensions of each tuple. Let = |C,[, so the runtime of the main routine is
O(nk)=0(n) (supposek is constant compared t@). The subroutineCtrl_Inf_Chunk
is called for each of thév = Hle m; chunks (n; are defined in the algorithm). It
evaluates the cardinality of each input chudk which has the same complexity as
establishing its 1-* aggregation matrix{; .

Letn’ = [[_, D} be the number of columns ih/] ( D} are defined in the algo-

rithm), thenm’ = n’ 2%, 2 is the number of rows. Leéb?** be the maximum value

amongD). Out of the(m/n’) elementsO(m’ - DI"**) elements must be considered to

computeM;. SupposeX:f:1 27-)De® = O(k). Then the runtime of the subroutine is
O(k-TI_, D). Itis calledN times so the total runtime @ (k- [[*_, m;-[[*_, D)) =

O(k - TTi_y mi - TIi_y 2¢), which isO(k - [T}, D;) = O(n). We note that by defini-
tion, determining non-compromiseability has a complexitp¢fi®) and the maximum
non-compromiseable subset of aggregations cannot be found in polynomial time [11].

Enhancing the Algorithm: The algorithm demonstrates a simple application of the
cardinality based criteria in Section 3, which can be improved in many aspects. The
dimension hierarchies inherent to most OLAP datasets can be exploited to increase the
semantics preserved by the algorithm. For example, assume the time dimension have the
hierarchy composed of day, week, month and year. Instead of partitioning the dataset
arbitrarily, each chunk can be defined on week. Hence queries about weeks, months and
years can be answered with aggregations in algorithm output.

Notice that the key to cardinality-based non-compromiseability is that each chunk
in the partition of core cube must be either empty or dense (full). The row shuffling [4]
technique proposed by Barbara et al. increases the subspaces density of data sets by
shuffling rows in those categorical, unordered dimensions. Row shuffling can be inte-
grated into the inference control algorithm as a pre-processing step prior to partitioning.

Data Cube Operations: We briefly describe how our algorithm may address common
data cube operations such as slicing, dicing, rolling up, drilling down and range queries.
Slicing, dicing and range query require aggregations to be defined on a subspace formed
by intervals in dimension domains. Our algorithm also partitions the data set into small
chunks. Therefore, in order to enhance our algorithm to address these operations, the
subspace required by these data cube operations should be formed as the union of multi-
ple chunks. Rolling up and drilling down require aggregations to be defined at different
granularities than those in the original data cube. Rolling up does not directly create
inference threat because with coarser granulated queries include less information about
individual data. Our ongoing work is addressing these detalils.

Although update operations are uncommon in decision support systems, data stored
in data warehouses need to be updated over time. Our algorithm is suitable for update
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operations in two aspects. Firstly, the change of values has no effect on the cardinality,
which determines non-compromiseability in our algorithm. Secondly, because we have
localizedprotection by partitioning data set into small disjointed chunks, the effect of
an insertion or deletion is restricted to only the chunks containing updated tuples.

5 Conclusions

Based on a definition of non-compromiseability to mean that there are more than one
choices for any of the unknown individual value to fit a given set of their aggregates, we
have derived sufficient conditions for non-compromiseability in sum-only data cubes.
Compromiseability of arbitrary aggregates can be reduced to those of one dimensional
aggregates. Full or dense core cuboids are free from inferences, and that there is a tight
lower bound on the cardinality of a core cuboid for it to remain non-compromiseable. To
apply our results for inference control of data cube style OLAP queries, we have shown
a divide and conquealgorithm based on a three-tiered model. Future work includes
enhancing our results and algorithm to include data cube operations and consider other
variations of OLAP queries.
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Proof(Theorem 1):
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1.

We show that for any € S, we have|Qset(t)| > 1. Lett € S be any j-* aggre-
gation vector. Without loss of generality, lebe (x, *, ..., %, z411, T jt2, ..., Tk).
From Definition 2, we have th@set(t) = {t' : ¢ € Cy, t'[j+1] =z, t'[j+
2] = zj10,...,U'[k] = x4 }. Becaus&ly = I1% |1, D;] we have thatQset(t)| =

7_, D;. With the assumption ofiin(D1, Ds, ..., Dy) > 1 we haveQset(t)| >
1

. Suppose tha€, is not trivially compromised byS;. We show|C.| > 2F-1 .

max (D1, Ds, ..., Dy) for k > 2. Without loss of generality, we assunig, =
max (D1, Da, ..., D). Notice that there are totallp,, slices ofC.. on thek" di-
mension. Without loss of generality it suffices to show tHa(C., 1)| > 2+,
We do so by mathematical induction as given below.

Inductive Hypothesis: For every; < k, there is a subset; C P;(C., 1) such that
|S;| = 2i~1 satisfying the condition that for any, ¢, € S, t1[j] = t2[4] for all

J =t

Base CaseBY Definition 1, there exists € C, such that[k] = 1. Let S; be{t}.
Then we have that; C P (C.,1) and|S;| = 1, validating the base case of our
inductive hypothesis.

Inductive Case: Suppose we hav§; C P (C., 1) for 1 < i < k such thatsS;| =
2i=1and for anyty, ta € S;, t1[j] = t2[j] for all j > . We show that there exists
Siv1 C Pu(C.,1) such that|S; 1| = 2¢, satisfying the condition that for any
t1,ty €5;, tl[j] = tg[ﬂ forallj >+ 1.

For anyt; € S;, lett)[i] = = andt/[j] = t[;] for all j # i. We havet| € S; and
sincet; € Qset(t)) we haved@set(t})| > 1. SinceC. is not trivially compromised
by S;, according to Definition 4, we havigset(t})] > 1. Hence, there exists
t! € Qset(t)) C C, such that/[i] # t1[i] andt{[j] = t1[j] for all j # 4; which
impliesty ¢ S;.

Now we show that for any, € S; such thatt; # t,, we havet! # ¢, where
thy € C., th[i] # ta[i] andy[j] = ta[y] for all 7 # 4. Sincet;[j] = t2[4] for all

j > ithere must bé < i such that, [I] # t2[l]. We know that/[j] = t|[j] = t1[4]
andtf[j] = t4[j] = t2[j] for all j < i. Hence we have that/[l] # tJ[l]; that s,
t] # .

Hence there existS, C C. satisfying:|S}| = |S;|, and for anyt € S;, there exists
one and only on€ € S! such that[i] # ¢'[¢] andt[j] = ¢'[4] for all j # i. Define
Si+1asS; U S.. SincelS;| = 20~ we have|S; 1| = 2°.

This proves the inductive case of our induction, from which the c|&piC., 1)| >
2F=1 follows.

O

Proof(Lemma 1):

1. LetC € S,;;. We show that”, cannot be nontrivially compromised lay. For any

t € C. there exists one and only one € C such that € Qset(t'). Hence in

M each non-zero column is a unit column vector, which implies #fatould be
transformed into its reduced row echelon form by merely permuting the columns.
Furthermore, each row @ff must contain at least two 1's since no trivial compro-
mise is assumed. Hence no unit row vector is in the reduced row echelon form of
M, that is,C. cannot be nontrivially compromised 6. This concludes our proof.
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2. Without loss of generality, letbe a j-* (j > 1) aggregation vector satisying that
t[i] = = for anyi € [1, j]. Let C be the set of 1-* aggregation vectors defined as:
{t: Y[1] = *,t'[i] € [1, D;]Vi € [2,7],¢[i] = t[i]Vi € [j + 1, k]}. We have that
Qset(t) = Qset(C). Hence in the aggregation matrM,,, ., of S,;; on C., any
row corresponding to a j-fj > 1) aggregation vector can be represented as the
linear combination of the rows corresponding to the 1-* aggregation vectors. The
rest of the proof follows from linear algebra.

3. First we show that the Lemma fér> 2 can be reduced to the Lemma fore= 2.
Fork > 2,letS] be{t: t € S1,t[j] = 1V t[j] = xVj > 2}. ThenQset(S]) =
{t :+ t e C.,tlj] = 1Vj > 2}. The pair< Qset(S]),S; > can be regarded
as a special two dimensional data cube. Hence, we can Quitd(S?) in such a
way that it is nontrivially compromised h§;, as shown in the succeeding case of
k = 2. By Lemma 1, if a tuple is nontrivially compromised 5 in the data cube
< Qset(S7),S] >, then it is also nontrivially compromised I8 in the data cube
< C¢, Sq >. This reduces proof fot > 2 to that ofk = 2, which we prove now.
For the proof ofk = 2, without loss of generality, we use mathematical induction
on D¢, for an arbitrary, but fixed value dd, > 4.

Inductive Hypothesis: For anyD,, D, > 4, we can build a two dimensional data
cubeC. with integer boundarie®,, D, such thaiC, is nontrivially compromised
by Sl .
Base CaseWhenD; = D, = 4, consider the core cuboid. corresponding to the
fourth quarter data in Table 1. It validates the base case of our inductive hypothesis.
Inductive Case: Assuming that there is nontrivially compromiseable two dimen-
sional core cuboid with integer boundarié€®,, D>}, we show how to obtain a
nontrivially compromiseable two dimensional core cuboid with integer boundaries
{D; +1,D5}.
Suppose we are given a core cubaid with boundaryD; = j > 4. Further
suppose without loss of generality that the tudlel ) is nontrivially compromised
in < C., Sa; >. Then, there is a row vectar such thata - M; = e;. Now we
show how to build a core cuboi@, for D; = j + 1 such that the tupl¢l, 1) is
nontrivially compromised inr< C”,, S,;; > also.
First define a set of tuplesS as:

— foranyt e C,t[1]=j+1

— foranyl € [1, D2}, (j + 1,1) € Cifand only if (4,1) € P1(C., j)
Then, we defin&’ = C. U C. Consequently, we havi, (C.,j + 1) = C. Let
M be the 1-* aggregation matrix ¢f, onC’. Hence M = (M;|M.), where the
non-zero columns i/, correspond to the tuples . From the definition o we
further havelM; = (M;'|M.), where the non-zero columns &f, correspond to the
tuples inPy (C., j). Thus,M; = (M{'|M.|M.). Sincea- My = (a- M{'|a- M.) =
e1,a-M{ = (a-M{'|a-M.|a-M.) = (e1]0). Hence ", is nontrivially compromised
by Sy, validating the inductive case of our inductive hypothesis.

a
Proof(Theorem 2):

1. Due to Theorem 1, we only need to show the case of nontrivial compromise. In
this respect, without loss of generality, we show that (1,1,...,1) cannot be
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nontrivially compromised by, . Let C'; = {t : Vi € [1, k], t[i] = 1V t[i] = 2}.
Since(Dy, Do, ..., Dy) > 2, we have thaC} C Cy and\C}| = 2F. Because of
Lemma 1, we only need to prove thgtcannot be compromised 8 in the data
cube< C}, Sau >. Let M7 be the 1-* aggregation matrix ¢f; on C}. According
to Definition 3, there are* non-zero column vectors if/{, corresponding to the
2% tuples inC}. In the rest of the proof we formally show that each of #ienon-
zero column vectors can be represented by the linear combination of tB& left
column vectors. Then, it follows from linear algebra thatannot be compromised
by S in data cube< 0}7 Sau >.
In order to prove our informally stated claim, we define $fgm assignment vector
as ann dimensional column vectat;,,, wheren is |C/|, as follows:

- tsign[l] =1

— toign[2' + j] = —tsign[j] forall0 <i < k—1landl <j <2°

— tsignlj] = 0 forall j > 2%
Claim: Mj - ts;4, = 0, where0 is then dimensional zero column vector.
Justification:

Lett = Sq[é], t[l] = = forl € [1,k].
Letv be M/[i, —].
Suppose[j] = 1 ort[j] = 2forall j # .
Then|Qset(t)| = 2, and as a consequence we @akt(t) = {t1,t2}
Whel’etl,tg S Cf, tl[l] =1t [l] =2
andty[j] = ta[j] = t[j] forall j £ 1
Hence, there are two integefs j» € [1,n] satisfying
vlj1] = v[je] = 1 andv[j] = 0 for anyj # ji, ja.
By Definition 3, M [—, j1] and M/ [—, j2] correspond t@,; andt
respectively.
Because?} is formed in dictionary order, we g¢t = j; + 2!.
Hence, we have - t;4, = 0.
Otherwise|Qset(t)| = 0; and henc&)set(t) = ¢.
Hencep = 0, and hence) - tg;4n, = 0.
This justifies our claim.

Hence, as stated earlier, the justification of our claim concludes the main proof.

. Without loss of generality we assumi, D, are the least two amon;’s. For an

arbitrary but fixed value ab-, we show by induction o, thatC, as constructed
in the proof of Lemma 1 satisfie€’; — C.| = 2Dy + 2Dy — 9.
Inductive Hypothesis: C. as constructed in the proof of Lemma 1 satisfies:

- |Cy —C.| =2j+2Dy —9foranyj > 4.

- ‘ P1(0f7j) - Pl(cc»j) ‘: 2 for anyj € [LDI]'
Base Caseln the base case of the proof of Lemma 1, the core cubpidatisfies
|Cy—C,| = 2D, +2D,—9. Notice that the core cuboid;, = 4, and| P;(Cy, j)—
P (C.,j) |= 2. This validates the base case of our inductive hypothesis.
Inductive Case: Suppose foD; = j we have|C; — C.| = 2j + 2D, — 9 and
| P1(Cf,j) — Pi(Ce, j) |= 2. Let C be the full core cuboid corresponding to
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C! for D; = j + 1. By the definition ofC in the proof of Lemma 1, we have
|C| = |P1(Ce, j)| and as a consequeng; — Ct| = [Cy — Ce| +2 =2(j + 1) +
2D, — 9. SincePy(Cy,j + 1) = C. Hence,| P1(C%,5) — Pi(Cy, ) [= 2. This
validates the inductive case of our inductive argument and consequently concludes
our proof of the tightness of the cardinality lower bound for avoiding nontrivial
compromiseability.
Lower Bound: We show that iiC'. is nontrivially compromised then we haj@; —
C.| > 2Dy + 2D, — 9. First we make following assumptions.
(&) Thetuplet = (1,1,...,1) € C. is nontrivially compromised by,
(b) No tupleinC. is trivially compromised
(c) There exists' C S, such that for any’ € S, ¢t cannot be nontrivially compro-
mised byS \ C
(d) Foranyt’ € Cy\ C., t cannot be nontrivially compromised I8} in data cube
< C.U{t'}, San >. Thatis,|Cy — C.| has reached its the lower bound.
Assumption 2 holds by Definition 4. Assumption 3 is reasonable, as by Lemma 1
S must contain at least two 1-* aggregation cuboids. Assumption 4 is reasonable,
because by Theorem &'y — C.| has a lower bound i€, is nontrivially compro-
miseable.
Claim: Suppose Assumption 1,2,3, and 4 hold. Furthermore assume that there is
aC € S wheret € C satisfiest[i] = *. Then|P;(C¢,1) — P;(C,,1)] > 1, and
|Pi(Cy,j) — Pi(Ce, j)| > 2 holds for anyj € [2, D;].
Justification: The proof is by contradiction. Without loss of generality, we only
justify the claim fori = k andj = 2. That is, given & € S satisfyingt[k] = =
for anyt € C, we prove thatP, (Cy,2) — Py(C,,2)| > 2.
First we transform the aggregation matrix ®fon C. by row permutation into a
singly bordered block diagonal form (SBBDF) [29], denoted My, »,,. Thei"
diagonal block ofM corresponds td,(C.,i) and{t : t € S\ C,t[k] = i},
and the border o/ denotes the aggregation cubaid We call the columns o/
corresponding to th&” diagonal block as th&” slice of M.
Due to Assumption 1, there exists a row veaimatisfyinga - M = e;. Letr; be
M]i, —] then we get; = > ", a[i] - r;. Suppose each diagonal block &f has
sizem’ x n'. User{, for1 < j < Dy to represent the row vector composed of the
elements of-; that falls into thej?" slice of M. Notice that there are’ elements
in 7. We also use’ and(’ to represent the’ dimensional unit row vector and
dimensional zero row vector, respectively. Then the following are true:
e = S0 alilr! + 7 alilr]
i 0= 7 alilr? + Y alilr?
First we suppos¢P,(Cy,2) — Py(C.,2)| = 0, that is, the second slice aff
contains no zero column. We then derive contradictions to our assumptions.
Since|Py(Cy,2) — Py(C.,2)| = 0 the first slice ofM contains no more non-zero
columns than the second sliceldf does. Intuitively if the latter is transformed into

a zero vector then applying the same transformation on the former leads to a zero
vector, too. This is formally represented as:

i 0" =07 afm! +iJrt + 7 alilrh
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Subtracting (iii) from (i) givese; = Z;’il(a[z‘] — a[m’ + i])rl. That implies
C. is nontrivially compromised bys \ {C}}, contradicting Assumption 3. Thus
Py(Cf,2) — Py(C,,2)| #0.

Next we assuméP;,(Cy,2) — Py(C.,2)| = 1 and derive a contradiction to our
assumptions.

First the row vector3 satlsﬂes the following condmon

V. O =350l £ 5 alir

Lett € Pk(Cf ]) \ Pk(Cc,z) Rotice that (|) (ii) still hold. Supposé€ corre-
sponds toM[—,y] = 0. Now assume we addl to P, (C.,2), consequently we
haveM[—, y] # 0. Due to Assumption 4, we have that the left side of (ii) becomes
e}, thatis,a - M[—,y] = 1. There is also an extra 1-eleméWwt]x, y] in the border
of M.

Now let ¢ be the tuple corresponding t/[—, y + n'] in the third slice ofM.
Supposet” € Py (C,,3) and consequenthW/[—,y + n/] # 0. We have that
M[—,y +n'] = M[—,y] and consequently - M[—,y+n'] =1

By removingt’ from P, (C.,2) we return to the original state that all our assump-
tion hold. Now we show by contradiction thét € P, (C.,3) cannot hold any
longer. Intuitively, since’ is the only missing tuple in the second sliceMdf, the
third slice of M contains no more non-zero vectors than the second slice of
does, except’. Because: - M [—,y + n'] = 1, elements ok transform the second
slice of M to a zero vector, as shown by (ii), also transform the third slick/ab

a unit vector. This is formally represented in (v):

V. 6”2213m2m+1a[ }T +Zz m— m-‘rla’[] 7:,;
Subtracting (iv) from (v) we get that’ = Zl b1 (@i —m'] —ali])r?; implying
C. is compromised by \ {C;}. Hence, Assumption 3 is false. Consequeritly
C..
Similar proof exists for the'" slice of C,, wherei = 4,5,..., D;. However,
Mz, —] # 0 because if so, we can let, be zero and then decrease the num-
ber of missing tuples i@, contradicting Assumption 4. Hend€[z, —] is a unit
vector with the 1-element in the first slice 8f. However, this further contra-
dicts Assumption 2, that no trivial compromise is possible. Hence we have that
| Py (Cy,2) — Py(C.,2)| = lis false.
Now consider|P,(Cy,1) — Pi(C.,1)|. Suppose all the assumptions hold, and
|Pk(Cf, 1) — Pk(Cc, 1)| = 0. Lettq,ty € Pk(Cf,Z) \ Pk(CC,Q). Now define
Cl = C.\ {t} U {t1} and M’ be the aggregation matrix &f on C’. From
a-M = ey, and Assumption 4 we get M’ = e;, whereM [—, i] corresponds to .
This implies the nontrivially compromise of in < C",, S, >, with |P,(C, 1) —
P,(C%,1)] = 1, which contradicts what we have already proved. Hence, we get
|Pp(C¢,1) — Py(C.,1)| > 1. This concludes the justification of our claim.
The claim implies that the number of missing tuple€inincreases monotonically
with the following:

— The number of aggregation cuboidsin

— D,, provided there i€ € S satisfyingt[i] = * for anyt € C.
Hence|C; — C.| reaches its lower bound wheh= {C,, C>}, which is equal to
2D1 42D, —9, as shown in the first part of the current proof - concluding the proof
of Theorem 2. |



