
Finding Mode Invariants in SCR Speci�cations

Zhenyi Jin�

ISSE Department

George Mason University

Fairfax, VA 22030

email: zjin@isse.gmu.edu

Abstract

This paper introduces an algorithm and a new graph, the Conditioned Transition
Graph (CTG), to derive the mode invariants from an Software Cost Reduction (SCR)
mode transition table. An SCR requirements document contains a complete descrip-
tion of the external behavior of the software system. Some system properties, such as
mode invariants, can be used to describe safety features that must be ensured during
software development. Current SCR requirements documents give independently de-
rived invariants. The algorithm detects mode invariants by �rst transforming an SCR
mode transition table into a CTG, and then applying de�ned computations on two
matrices derived from the CTG incidence matrix. The algorithm was used to generate
mode invariants from an SCR mode transition table, which were correct as compared
to externally derived invariants. An SCR requirements document implies some invari-
ant properties of the speci�ed system. This method can also be used to provide test
requirements and test cases that are independent of the software design structure.

1 Introduction

A software requirements document completely describes the external behavior of a software
system [Dav93]. It provides a way to communicate with the other stages of the software
development, and de�nes the contents and boundary of the software system. Errors in this
document are di�cult and expensive to correct if they propagate to the later stages in the
software development lifecycle. A requirements speci�cation is a behavioral speci�cation of
the system's activities. Also, the requirements speci�cation implicitly or explicitly includes

�Partially supported by the National Science Foundation under grant CCR-93-11967.

1

some properties that are invariant properties of the system. Some of these invariants are
important safety features that must be ensured during the software development.

The Software Cost Reduction (SCR) requirements notation was developed by a research
group at the Naval Research Laboratory as part of a general Software Cost Reduction project
[Hen80]. A complete SCR requirements speci�cation describes the behavioral, functional,
precision, and timing requirements of the software system under development. The model is
designed for analysis of behavioral requirements only. Introduced more than a decade ago
to describe the functional requirements of software, the SCR speci�cations has been applied
to practical systems such as the A-7 Operational Flight Program [HPSK78] [AFB+88].

System properties should be re
ected in the structure of SCR speci�cations independently of
speci�c applications. In this paper, we propose an algorithm to detect system properties and
invariants from an SCR speci�cation table. We introduce a conditioned transition graph and
mode transition matrices, which are derived from the SCR speci�cations, and then �nd the
system invariants by comparing the derived mode transition matrices. This new invariant
detection method provides a mechanical procedure that can be easily automated. It views
the SCR speci�cations from the SCR structure's point of view and analyzes mode invariants
as structural properties. It presents a new way to analyze software requirements documents
and detects implicit system properties that can be very useful in understanding, developing
and testing the software systems.

The outline of this paper is as follows. Section 2 discusses related work. Section 3 gives a brief
introduction to the SCR speci�cations construct and introduces invariant properties. Section
4 proposes an algorithm to �nd mode invariants in the SCR speci�cations. The method is
applied to a cruise control problem in Section 5. Section 6 summarizes and discusses some
related issues. Conclusions are presented in Section 7.

2 Related Work

SCR speci�cation has been used to specify practical systems [HLK93]. Also, research has
been done to analyze requirements consistencies and to verify given system properties. Atlee
and Gannon [AG93] use model checking to analyze SCR speci�cations speci�cations. Model
checking of temporal logic, a sound technique used to verify safety properties in hardware
systems, is used to verify a given set of safety properties for event-driven systems. A model
checker [Bro89] determines whether the invariants hold or not. The result shows discrepancies
between the SCR speci�cations and the safety properties. Atlee [Atl94] extends this work
by presenting a logic-model semantics for SCR mode speci�cations, which enables native
model-checking of SCR speci�cations. In other related work, Heitmeyer and Labaw [HLK93]
propose a consistency checker that tests all tables and de�nitions in an SCR speci�cation.
Mode invariant properties are not discussed in their paper.

2

3 SCR Speci�cations

In this section, we brie
y describe the SCR speci�cations as used in Atlee and Gannon's
paper [AG93] and discuss some system properties.

3.1 SCR Constructs

The SCR speci�cations were developed by a research group at NRL as part of a general Soft-
ware Cost Reduction project [Hen80]. An SCR document speci�es a software system's behav-
ior as a �nite set of concurrent, event-driven state-transition machines called modeclasses.
Each modeclass is composed of a set of modes that represent the system's di�erent modes
of operation, and transitions among the modes. Each modeclass describes one aspect of the
system's behavior, and the global behavior of the entire system is de�ned by the composition
of the system's modeclasses. The system is in exactly one modeclass at a time. The system's
environment is represented by a set of boolean environmental conditions. These de�nitions
are from Atlee and Gannon's paper [AG93].

� Environmental Conditions are the inputs to the system. All conditions are boolean.

� An event is a change to a condition's value. Events are detectable at the point in
time at which they occur.

� A trigger event is a change in the value of one condition. For example, trigger event
@T(C1) speci�es the point in time when the values of condition C1 becomes true.
Similarly, trigger event @F(C1) speci�es the time when condition C1 becomes false.

� A conditioned event is an event whose occurrence depends on the values of other
conditions. For example @T(C1) WHEN(C2) describes the event of condition C1
becoming true while condition C2 remains true.

� System state is the set of current values of the environmental conditions.

� A mode is a set of system states that share a common property.

� A modeclass is a set of modes; the union of the modes in a modeclass must cover the
system's state space.

� The system is in exactly one mode of each modeclass at all times.

� A mode transition occurs between modes in the same mode class as a result of
system state changes.

3

An event occurs when the values of a condition change from true to false or vice versa.
Events therefore specify instants of time, while conditions specify intervals of time. Formally,
a conditioned event @T(C1)WHEN(C2) occurs at time t if and only if C1 is false and C2
is true at time t-�, and C1 and C2 are both true at time t. In the above conditioned event,
C1 is called the event's triggering event and C2 is called the event's WHEN condition.
SCR semantics propose three de�nitions for an event occurrence and allow the requirements
designer to decide which de�nition pertains to each event [AG93]. We use the de�nition
adopted in Atlee and Gannon's paper: WHEN conditions must be satis�ed both before and
at the time of the event and triggered conditions must be unsatis�ed immediately before the
event and satis�ed at the time of the event.

Using modes allows us to abstract away details that do not contribute to the system's
behavior; the values of all system conditions are not important at all times. In fact at the
requirements level, a condition's value is important only when it can trigger a transition
out of the current mode. A mode transition from one mode to another is activated by
the occurrence of a conditioned event. If a conditioned event can activate more than one
transition from the same mode, then the speci�cation is non-deterministic; executing exactly
one of the activated transitions satis�es the requirements.

Previous Mode Ignited Running Toofast Brake Activate Deactivate Resume New Mode

O� @T - - - - - - Inactive

Inactive @F - - - - - - O�

t t - f @T - - Cruise

Cruise @F - - - - - - O�

t @F - - - - - Inactive

t - @T - - - -

t t f @T - - - Override

t t f - - @T -

Override @F - - - - - - O�

t @F - - - - - Inactive

t t - f @T - - Cruise

t t - f - - @T

Table 1: SCR Speci�cation for the Cruise Control System

Table 1 shows the SCR speci�cation for an automobile cruise control system, presented
by Atlee and Gannon [Atl94]. The system's environmental conditions indicate whether the
automobile's ignition is on (Ignited), the engine is running (Running), the automobile is going
too fast to be controlled (Toofast), the brake pedal is being pressed (Brake) and whether
the cruise control level is set at Activate, Deactivate or Resume. The possible states of
the cruise control are abstracted into four modes: O�, Inactive, Cruise, and Override. The
system always starts in mode O�.

4

Each row in the table speci�es a conditioned event that activates a transition from the mode
on the left to the mode on the right. A table entry of @T or @F under a column header
C represents a triggering event @T(C) or @F(C), a table entry of \t" or \f" represents a
WHEN condition WHEN[C] or WHEN[:C]. If the value of an environmental condition C
does not a�ect a conditional event, then the table entry is marked with a hyphen \-". For
example, the last row in table 1 speci�es a transition frommode Override to mode Cruise due
to the occurrence of conditioned event @T(Resume)WHEN[Ignited^Running^:Brake]. If
the system is in mode Override at time t-�, and environmental conditions Ignite and Running
are true and condition Brake and Resume are false; and if at time t, condition Ignited and
Running are still true and Brake is not false, but condition Resume is now true; then at time
t the system is in mode Cruise.

3.2 System Properties

Modes and mode transitions specify system properties that hold under certain conditions. A
mode invariant must be true when the system enters the mode, must remain true while the
system stays in the mode, and can either be true or become false when the system leaves the
mode. Mode invariants are the invariant properties of a system mode. If certain conditions
hold then either the system is in a particular mode or the next system transition will be into
that mode. Whenever the system is in a particular mode, certain system conditions have
invariant values.

For example, in the cruise control system, if the system is in mode O�, then the system is
Not Ignited. This is a mode invariant.

SCR speci�cation speci�es software system functional behavior. Sometimes an SCR speci-
�cation includes a set of invariants as safety assertions, but these system invariants are not
additional constraints on the required behavior, they are included only as the goals that
the tabular requirements are expected to enforce. Also, if these invariants are not explicitly
listed, then we should be able to derive them from the speci�cation. The derived invariants
can also be compared with the explicit invariants as a veri�cation exercise. These invariants
can be used for di�erent applications, which will be discussed in later sections.

4 Finding Invariants in SCR Speci�cations

In order to describe the general method that can derive invariants from SCR requirements,
we need to formally de�ne the SCR mode transition table, and introduce some new concepts
to be used in this general method.

5

� Given a SCR speci�cation,

1. MODE is a �nite set that contains all the modes in a mode class.
MODE = f M1, M2, ..., Mm g

2. ENVIRONMENTAL conditions is a �nite set that contains all the environ-
mental conditions in the speci�cations.
ENVIRONMENTAL = f C1, C2, ..., Cn g,
Notice that the negation of an environmental condition is also an environmental
condition.

3. EVENTS is a �nite set that contains all the events in mode transition. Trigger
event Trigger(Ci), where Trigger is either @T or @F, can be represented as a
special case of conditioned event Trigger(Ci)WHEN[true]. The conditioned event
is used as a general term later in this paper. Also, trigger event Trigger(Ci) will
make condition Ci become true at the time the event occurs.
EVENTS = f e1, e2, ..., en g,

4. Event Conditions

For a given event ex that causes mode transition from modei to modej, the event
condition is de�ned as fij . fij may have di�erent condition values with respect to
the event occurrence time t. They are de�ned to have two values before and after
event ex occurs at time t:

(a) fij = ex = Trigger(Cx)WHEN [Cx1 ^ ... ^ Cxt].
The conditioned event here represents the occurrence of trigger event Cx

provided that condition ([Cx1 ^ ... ^ Cx1t]) holds. x1, ..., xt 2 f1, ..., ng.

(b) f�ij , called the post-event condition, represents the conditions at time t when
the events just occurred.

f �ij =

(
(Cx) ^ [Cx1 ^ :::^Cxt]; T rigger = @T
(:Cx) ^ [Cx1 ^ :::^ Cxt]; T rigger = @F

(c) �fij , named the pre-event condition, represents the condition at time t-�, be-
fore the event occurs.

�fij =

(
(:Cx) ^ [Cx1 ^ :::^ Cxt]; T rigger = @T
(Cx) ^ [Cx1 ^ :::^Cxt]; T rigger = @F

In the cruise control problem described in Section 5, F12 =@T(Brake)WHEN[Ignite],
F�12 = Brake ^[Ignite]
F23 = @F(Brake)WHEN[Ignite], thus F�23 = : Brake ^ [Ignite]

Notice that it is possible that there are more than two events that can cause
mode transition from modei to modej. We apply the \exclusive or" operation

6

� on to them. Therefore, fij = ex � ... � el, we then have similar f�ij and
�fij

representations.

� The SCR mode transition table

The mode transition table is shown in table 2. There are n environmental conditions
C1, C2, ..., Cn, and m modes M1, M2, .., Mm. The new modes are also one of the
modes in MODE. This table speci�es the events and conditions needed for mode Mi

to transition to a new mode.

Previous Mode C1 C2 Cn New Mode
f11 M11

M1
f1k1 M1k1

f21 M21

M2
f2k1 M2k2

....
fm1 Mm1

Mm
fmkm Mmkm

Table 2: The SCR Mode Transition Table

f11,f1k1, f21, f2k2, fm1,fk1, fk2, ..., fkm are event conditions.

11,1k1, 21, 2k2, m1,k1, k2, ..., km 2 f1, 2, ..., ng

M11,M1k1
, M21, M2k2

, Mm1, Mk1, Mk2, ..., Mkm 2 MODE,

C1, ..., Cn 2 ENVIRONMENTAL.

Also, there could have more than one conditioned event that can make a previous mode
transition to a new mode. Thus, in table 2 there could be more than one row in the
current fij row. Thus, fij is a set of disjunctions of conditioned events that make mode
Mi to transition to mode Mij. where i, j 2 f1, 2, ..., n g.
So, we have fij = e1 _ e2 _ ... _ ek, ek 2 EVENTS, k=1, ..., k)

� Conditioned Transition Graph (CTG)

This paper introduces a Conditioned Transition Graph (CTG) to represent the SCR
mode transition table. A CTG is obtained from the SCR mode transition table using
the following steps:

1. choose (or given) a mode in the Previous Mode column as the initial mode; use
it as a node in the graph.

7

2. from the initial mode node, if there are condition events that make the initial
mode transition to new modes, then there are arcs going out from the initial
mode node to each new mode node and annotated with the condition event on
each arc respectively.

3. �nd each new mode node transitioned from the initial mode, �nd out what new
modes it can transition to with respect to the SCR table. Repeat this step until
every mode transition has been covered.

A CTG has the following de�nition:

CTG = (Nodes, Arcs, Conditions), where

{ Nodes is a �nite set of mode nodes, each belonging to MODE, and each appearing
in the SCRmode transition table either as a previous mode or a newmode. Several
nodes can have the same mode name (this is used in the invariants detection).
These nodes appear as di�erent nodes in the graph, but those nodes with same
names are treated as one node in the mathematical representation of the graph.
This is used in the invariant detection.

{ Arcs and Conditions: if there is a transition from Modei to Modej under con-
dition fij , (i, j : 1, ..., n), then there is an output arc coming out from Modei and
going into Modej. This arc is annotated with condition fij .

For example, �gure 1 gives a subgraph of CTG of the cruise control problem; O� is the
initial mode, it can transition to mode Inactive if event @T(Ignite) occurs, also mode
Inactive can transition back to mode O� under event @F(Ignite) or it can go to mode
Cruise if event @T(Activate)WHEN[Ignited^Running^:Brake] occurs. The two O�
nodes are put in di�erent place in the CTG, but semantically, they are one node O�.

Inactive

Cruise

@T(Activate)WHEN[Ignited ^ Running ~Brake]^

Off

Off

@T(Ignite)

@F(Ignite)

Figure 1: A subnet of the CTG

8

� Conditioned Incidence Matrix { M
An incidencematrix is a mathematical representation of a graph. To represent CTG, we
introduce the Conditioned incidence matrix as an extension of the traditional incidence
matrix to mathematically describe CTG graphs.

Given a CTG G=(N, A, C), m=jNj, the conditioned incidence matrix is represented
by an m � m matrix denoted as M where the rows represent the condition events that
make one mode on the left-hand side of the matrix transition to the modes that appear
in the columns.

Let Fij denote the element in the i-th row and the j-th column in the matrix; it has
one of the following values:

{ Fij = 0 if there is no transition from Modei to Modej.

{ Fij = 0 if i equals j.

{ Fij = fij if the condition for transition from Modei to Modej is fij .

0
BBB@

M1 M2 ::: Mm

M1 0 F12 ::: F1m

M2 F21 0 ::: F2m

::: ::: ::: ::: :::

Mm Fm1 Fm2 ::: 0

1
CCCA

� After-transition Matrix { A

We introduce the After-transition Matrix to represent the possible conditions that a
mode should satisfy at time t after one of the other modes transitions into this mode.

An After-transition matrix A is obtained from the Conditioned incidence matrix by
applying the \exclusive or" operation � to every element in the conditioned incidence
matrix within each column.

Given a conditioned incidence matrix M, the After-transition matrix is represented by
an m � m matrix denoted as A. Aij denotes the element in the i-th row and the j-th
column in the matrix; it has one of the following values:

{ Aij = 0 if i 6= j.

{ Aij = F�1i � F�2i �...�F
�
mi if i = j where F�ij is post-event condition of Fij.

The After-transition matrix has the following form:

0
BBB@

M1 M2 ::: Mm

M1 F �

11 � F �

21 � :::� F �

m1

M2 F �

12 � F �

22 � :::� F �

m2

:::

Mm F �

1m � F �

2m � :::� F �

mm

1
CCCA

9

� Leave-mode Matrix |- B

The Leave-mode matrix is obtained from the conditioned incidence matrix by dis-
juncting every element in the conditioned incidence matrix in each row. It shows the
possible condition events that make the current mode leave for another mode.

Given a conditioned incidence matrix M, the Leave-mode matrix is represented by an
m � m matrix denoted as B. Bij denotes the element in the i-th row and the j-th
column in the matrix; it has one of the following values:

{ Bij = 0 if i 6= j.

{ Bij = Fi1 _ Fi2 _..._Fim if i = j.

The Leave-mode matrix has the following form:

0
BBB@

M1 M2 ::: Mm

M1 F11 _ F12 _ :::_ F1m

M2 F21 _ F22 _ :::_ F2m

::: :::

Mm Fm1 _ Fm2 _ :::_ Fmm

1
CCCA

� The Invariant Detection Algorithm

With respect to a graph, the After-transition matrix and the Leave-mode matrix shows
the input conditions to a mode and the output events for leaving a mode respectively.
For example, �gure 2 shows the input conditions and output events of Mode 1.

......

......

F*11 F*m1

F
12 F1m

Mode1

Figure 2: Input Conditions and output events of Mode 1

A mode invariant must be true when the system enters the mode, and must remain
true while the system stays in the mode, and once it is false, the system must leave
the mode. Negations of the Leave-mode conditions are candidate invariant conditions
if the trigger condition satis�es one of the after-transition conditions, and also the

10

WHEN conditions of the leave-mode condition should also satisfy the after-transition
conditions. This means, if a condition has to be satis�ed when entering the mode, and
if it is not satis�ed the mode must transition to another mode, it is a mode invariant.

Therefore, the invariant detection algorithm can be described in the following steps.

1. Draw the CTG graph based on SCR mode transition table.

2. Obtain M, the Conditioned incidence matrix for the CTG.

3. Obtain A, the After-Transition matrix from the Conditioned incidence matrix.

4. Obtain B, the Leave-mode matrix from the Conditioned incidence matrix.

5. Compare Matrix A and B to �nd the mode invariants.

step 1 For each Aii, (i=1 to n in matrix A)
Aii = F�1i � F�2i � ... � F�mi

= (Cx1) ^ [Cx11 ^ ... ^ Cx1t1] � ... � (Cxi) ^ [Cxi1 ^ ... ^ Cxiti]

� ...
� (Cy1) ^ [Cy11 ^ ... ^ Cy1s1] � ... � (Cyi) ^ [Cyi1 ^ ... ^ Cyisi]
x1, x11, x1t1, ..., xi, xi1, xiti, ..., y1, y11, y1s1,... yi1, yisi 2 f 1, ..., ng.
The postcondition set (Postset) contains all the environmental conditions
that appear in the post-event conditions of an particular element in matrix
Aii, where i 2 f 1, ..., n g.
Postset(Aii) = f f Cx1, Cx11, ..., Cx1t1 g, ..., , f Cxi, Cxi1, ..., Cxiti g,
f Cy1, Cy11, ..., Cy1s1 g, ..., , f Cyi, Cyi1, ..., Cyisi gg

Step 2 Bii = Fi1 _ Fi2 _ ... _ Fim
each Fij = Trigger(Cyi) ^ [Cyi1 ^ ... ^ Cyik]

De�ne the Leave-Condition LC as the event condition at time t-� before the
trigger event occurs:

LC(Fij) =

(
:Cyi; T rigger = @T
Cyi; T rigger = @F

De�ne the WHEN condition set WC as the environmental conditions that
appear as the WHEN condition of Fij.

WC(Fij) =fCyi1, ..., Cyikg

Step 3 For each Fij (j= 1 to m in Bii)

11

if LC(Fij) 2 each element of Postset(Aii) and WC(Fij) � each element of
Postset(Aii) then Modei ! LC(Fij) is an invariant.
Repeat Step 3 until j=m.

Step 4 Repeat Step 1 to Step 3 until i=n, then stop.

5 An Application

We now apply the invariant detection algorithm to the cruise control problem described in
Section 5. The SCR mode transition table is given in table 2. In order to �nd out mode
invariants from table 2, we apply the invariant algorithm described in Section 4 and each
step is shown as follows.

1. Obtain the CTG for the cruise control problem from the SCR mode transition table.
The CTG is shown in �gure 3.

In this CTG, mode O� is the given initial mode; it can transition to mode Inactive if
@T(Ignite) occurs at time t. Also, node Inactive has two output arcs, one to O� node
when @F(Ignite) occurs, and another to Cruise mode when @T(Activate)WHEN[Ignite
^ Running ^ : Brake] occurs. Similarly, Cruise node goes to three di�erent nodes, and
Override node has three output arcs. From Cruise to Inactive node, there are actually
two events that can make the transition happen, they are connected by an \exclusive
or" operator � annotated on the arc.

Off

Off

Inactive

Cruise

Off Inactive Override

Off Inactive Cruise

@T(Ignite)

@F(Ignite) @T(Activate)WHEN[Ignite ^ Running ^ ~Brake]

@F(Ignite)
@T(Running)
WHEN[Ignite]

@T(Toofast)
WHEN[Ignite]

@T(Brake)WHEN[Ignite ^ Ruuning ^ ~Toofast]

@T(Deactivate)WHEN[Ignite^ Ruuning ^ ~Toofast]

@F(Ignite)

^ Running ^ ~Brake]

^ Running ^ ~Brake]

@T(Activate)WHEN[Ignite

@T(Resume)WHEN[Ignite@F(Running)
WHEN[Ignite]

Figure 3: CTG graph for cruise control problem

12

2. Obtain matrix M, the conditioned incidence matrix, from the CTG.

The Conditioned incidence matrix M shows the nodes and input/output arc relations
in the CTG. For instance, for mode O� to transition to mode Inactive, @T(Ignite)
has to occur, while no transition goes directly from mode O� to mode Cruise, so the
corresponding matrix element is 0. The conditioned incidence matrix for CTG is shown
as:

0
BBBBBBBBBBBBBBBBBBBBB@

Off Inactive Cruise Override

Off 0 @T (Ignite) 0 0

Inactive @F (Ignite) 0 @T (Activate)WHEN 0
[Ignite ^Running ^ :Brake]

Cruise @F (Ignite) @F (Running)WHEN [Ignite] 0 @T (Brake)WHEN

�@T (Toofast)WHEN [Ignite] [Ignite ^Running ^:Toofast]
�@T (Deactivate)WHEN

[Ignite ^Running ^:Toofast]

Override @F (Ignite) @F (Running)WHEN [Ignite] @T (Activate)WHEN 0
[Ignite ^Running ^ :Brake]

�@T (Resume)WHEN

[Ignite ^Running ^ :Brake]

1
CCCCCCCCCCCCCCCCCCCCCA

3. Obtain matrix A, the After-transition matrix, from matrix M.

Under each mode column in matrix M, each element in the column corresponds to one
input event that makes other modes transition to the current mode. If any one of these
conditions is satis�ed, the system will be in the mode under the current column. For
instance, O�, Cruise, and Override can each transition to a mode Inactive if one of
the corresponding events occurs. The system will then be in mode Inactive and it will
satisfy the enter condition. Inactive thus will satisfy the following conditions:

Ignite �(Ignite ^ : Running) � (Ignite ^ Toofast) � (Ignite ^ : Running).

The matrix A is shown as follows.

0
BBBBBBBBBBBBBBBB@

Off Inactive Cruise Override

Off :Ignite

�:Ignite

�:Ignite

(Ignite)
�((:Running) ^ [Ignite])

Inactive �((Toofast)^ [Ignite])
�((:Running) ^ [Ignite])

((Activate) ^ [Ignite ^Running ^ :Brake])
Cruise �((Activate) ^ [Ignite ^Running ^ :Brake])

�((Resume) ^ [Ignite ^Running ^ :Brake])
((Brake) ^ [Ignite

Override ^Running ^ :Toofast])
�((Deactivate) ^ [Ignite
^Running ^ ^:Toofast])

1
CCCCCCCCCCCCCCCCA

13

4. Obtain Matrix B, the leave-mode matrix. For each mode row in matrix M, it shows
the events that make the current mode leave for a di�erent mode. If these events
occur, then the mode may transition to one of the other modes. For example, mode
Cruise can leave for mode O� if @F(Ignite) occurs; or it can turn to mode Inactive if
@F(Running)WHEN[Ignite]_ @T(Toofast)WHEN[Ignite] occurs; or Cruise mode can
transition to mode Override if @T(Brake) WHEN[Ignite ^ Running ^ : Toofast]
occurs. The events that make Cruise mode leave for other modes are: @F(Ignite) _
(@F(Running)WHEN[Ignite]_@T(Toofast)WHEN[Ignite])_@T(Brake)WHEN[Ignite
^ Running ^ : Toofast].

0
BBBBBBBBBBBBBBBBBBBBB@

Off Inactive Cruise Override

Off @T (Ignite)
(@F (Ignite))

Inactive _(@T (Activate)WHEN

[Ignite ^Running ^:Brake])
(@F (Ignite))

_(@F (Running)WHEN [Ignite])
Cruise _(@T (Toofast)WHEN [Ignite])

_(@T (Brake)WHEN

[Ignite ^Running ^ :Toofast])
_(@T (Deactivate)WHEN

[Ignite ^Running ^ :Toofast])
(@F (Ignite))

_(@F (Running)WHEN [Ignite])
Override _(@T (Activate)WHEN

[Ignite ^Running ^ :Brake])
_(@T (Resume)WHEN

[Ignite ^Running ^ :Brake])

1
CCCCCCCCCCCCCCCCCCCCCA

5. Compare matrix A and matrix B and �nd invariants.

(a) Compare A11 and B11:
A11 = : Ignite � : Ignite � : Ignite
Postset(A11) = f f: Ignitegg

B11 = @T(Ignite)

LC(f11) = : Ignite

WC(f11) = f g

So, LC(f11) 2 f: Igniteg(element in Postset(A11)),
and WC(f11) � f: Igniteg so O� ! LC(f11) is an invariant. Therefore, we have
the mode invariant for O� as:

O� ! : Ignite

(b) Compare A22 and B22:
A22 = (Ignite ^ : Running) � (Ignite ^ Toofast) � (Ignite ^ : Running)
Postset(A22) =f f Ignite, : Runningg, f Ignite, Toofast gg

B22 = @F(Ignite) � @F(Activate)WHEN[Ignite ^ Running ^ : Brake]

14

i. LC(f21) = Ignite, WC(f21) = f g,
LC(f21) 2 f Ignite,: Runningg, and LC(f21) 2 f Ignite,Toofastg
also, WC(f21) � f Ignite, : Runningg and WC(f21) � f Ignite, Toofastg
so Inactive! LC(f21) is an invariant. Therefore, we have the mode invariant
for Inactive as:
Inactive ! Ignite

ii. LC(f22) = Activate,
WC(f22) = f Ignite,Running, : Brakeg
LC(f22) 62 f Ignite,: Runningg, and LC(f22) 62 f Ignite,Toofastg
also, WC(f22) 6� f Ignite, : Runningg and WC(f22) 6� f Ignite, Toofastg
so, Inactive ! LC(f22) (Inactive ! Activate) is not an invariant.

(c) Mode Cruise, compare A33 and B33:

A33 = (Activate ^ Ignite ^ Running ^ : Brake)
� (Activate ^ Ignite ^ Running ^ : Brake)
� (Resume ^ Ignite ^ Running ^ : Brake)

Postset(A33) = f fActivate, Ignite, Running, :Brakeg, fResume, Ignite, Running,
:Brakeg g

B33 = @F(Ignite) � @F(Running)WHEN[Ignite]
� @T(Toofast)WHEN[Ignite]
� @T(Brake)WHEN[Ignite ^ Running ^ : Toofast]
� @T(Deactivate)WHEN[Ignite ^ Running ^ : Toofast]

i. LC(f31) = Ignite
WC(f31) = f g
LC(f31) 2 fActivate, Ignite, Running, :Brakeg
LC(f31) 2 fResume, Ignite, Running, :Brakeg
also, WC(f31) � fActivate, Ignite, Running, :Brakeg
and WC(f31) � fResume, Ignite, Running, :Brakeg.
So, Cruise ! LC(f31) is an invariant.
Cruise ! Ignite

ii. LC(f32) = Running WC(f32) = fIgniteg
LC(f32) 2 fActivate, Ignite, Running, :Brakeg
and LC(f32) 2 fResume, Ignite, Running, :Brakeg
also, WC(f32) � fActivate, Ignite, Running, :Brakeg
and WC(f32) � fResume, Ignite, Running, :Brakeg.
So, Cruise ! LC(f32) is an invariant.
Cruise ! Running

15

iii. LC(f33) = : Toofast WC(f33) = fIgniteg
LC(f33) 62 fActivate, Ignite, Running, :Brakeg
and LC(f33) 62 fResume, Ignite, Running, :Brakeg
also, WC(f33) 6� fActivate, Ignite, Running, :Brakeg
and WC(f33) 6� fResume, Ignite, Running, :Brakeg.
So, Cruise ! LC(f33)(Cruise ! : Toofast) is not an invariant.

iv. LC(f34) = : Brake WC(f34) = fIgnite, Running, :Toofastg
LC(f34) 2 fActivate, Ignite, Running, :Brakeg
and LC(f34) 2 fResume, Ignite, Running, :Brakeg
but, WC(f34) 6� fActivate, Ignite, Running, :Brakeg
and WC(f34) 6� fResume, Ignite, Running, :Brakeg.
So, Cruise ! LC(f34)(Cruise ! : Brake) is not an invariant.

v. LC(f35) = : Deactivate, WC(f35) = fIgnite, Running, :Toofastg
LC(f35) 62 fActivate, Ignite, Running, :Brakeg,
and LC(f35) 62 fResume, Ignite, Running, :Brakeg
but, WC(f35) 6� fActivate, Ignite, Running, :Brakeg
and WC(f35) 6� fResume, Ignite, Running, :Brakeg.
So, Cruise ! LC(f35)(Cruise ! : Deactivate) is not an invariant.

So, we have the mode invariant for Cruise mode as:

Cruise ! Ignite ^ Running

(d) Mode Override, compare A44 and B44:

A44 = (Brake ^ Ignite ^ Running ^ : Toofast)
� (Deactivate ^ Ignite ^ Running ^ : Toofast)

Postset(A44) =f f Brake, Ignite, Running, : Toofast g, f Deactivate, Ignite,
Running, : Toofast gg

B44 = @F(Ignite)
� @F(Running)WHEN[Ignite]
� @T(Activate)WHEN[Ignite ^ : Brake]
� @T(Resume)WHEN[Ignite ^ : Brake]

i. LC(f41) =Ignite WC(f41) = f g
LC(f41) 2 f Brake, Ignite, Running, : Toofast g
and LC(f41) 2 f Deactivate, Ignite, Running, : Toofast g

16

also, WC(f41) � f Brake, Ignite, Running, : Toofast g
and WC(f41) � f Deactivate, Ignite, Running, : Toofast gg
So, Override ! LC(f41)(Override ! Ignite) is an invariant.

Override ! Ignite

ii. LC(f42) =Running WC(f42) = fIgniteg
LC(f42) 2 f Brake, Ignite, Running, : Toofast g
and LC(f42) 2 f Deactivate, Ignite, Running, : Toofast g
also, WC(f42) � f Brake, Ignite, Running, : Toofast g
and WC(f42) � f Deactivate, Ignite, Running, : Toofast gg
So, Override ! LC(f42)(Override ! Running) is an invariant.

Override ! Running

iii. LC(f43) =: Activate WC(f43) = fIgnite, Running, : Brakeg
LC(f43) 62 f Brake, Ignite, Running, : Toofast g
and LC(f43) 62 f Deactivate, Ignite, Running, : Toofast g
also, WC(f43) 6� f Brake, Ignite, Running, : Toofast g
and WC(f43) 6� f Deactivate, Ignite, Running, : Toofast gg
So, Override ! LC(f43)(Override ! : Activate) is not an invariant.

iv. LC(f44) =: Resume WC(f44) = fIgnite, Running, : Brakeg
LC(f44) 62 f Brake, Ignite, Running, : Toofast g
and LC(f44) 62 f Deactivate, Ignite, Running, : Toofast g
also, WC(f44) 6� f Brake, Ignite, Running, : Toofast g
and WC(f44) 6� f Deactivate, Ignite, Running, : Toofast gg
So, Override ! LC(f44)(Override ! : Resume) is not an invariant.

So, overall, we have the invariants in mode Override as:

Override ! Ignite ^ Running

In summary, the mode invariants derived from the SCR mode transition table
are:

O� ! : Ignite

Inactive ! Ignite

Cruise ! Ignite ^ Running

Override ! Ignite ^ Running

These invariants match the results in Atlee and Gannon's paper [AG93].

17

Atlee and Gannon [AG93] pointed out that some of the independently given safety
properties do not match the model checking results originated from the SCR table.
We revised the mode transition table as shown in table 3.

Cur Mode Ignited Running Toofast Brake Activate Deact Resume New Mode

OFF @T | | | | | | INACTIVE

INACTIVE @F f | | | | | OFF

INACTIVE @F @F | | | | | OFF

INACTIVE t t f f @T f @F CRUISE

INACTIVE t t f f @T @F f CRUISE

CRUISE @F @F | | | | | OFF

CRUISE t @F | | | | | INACTIVE

CRUISE t | @T | | | | INACTIVE

CRUISE t t f @T | | | OVERRIDE

CRUISE t t f | @F @T f OVERRIDE

CRUISE t t f | f @T @F OVERRIDE

OVERRIDE @F @F | | | | | OFF

OVERRIDE t @F | | | | | INACTIVE

OVERRIDE t t f f @T f @F CRUISE

OVERRIDE t t f f @T @F f CRUISE

OVERRIDE t t f f f @F @T CRUISE

OVERRIDE t t f f @F f @T CRUISE

Initial Mode : OFF

Table 3: Mode Transitions for Adjusted Cruise Control Speci�cations

The invariants calculated from this SCR mode transition table are as follows. The
mode Cruise invariant satis�es the safety assertion.

� O� ! : Ignite

� Inactive ! Ignite

� Cruise ! Ignite ^ Running ^ : Toofast ^ : Brake

� Override ! Ignite ^ Running

6 Discussion

It can be seen from previous sections that system properties such as mode invariants can be
derived directly from the SCR mode transition table. The calculated invariant results match
those in Atlee and Gannon's work [AG93]. The derivation method is used in this paper is
completely di�erent. The invariant detection algorithm presented in this paper is actually a
mechanical procedure that can be easily automated and the computation complexity is low
(the size of each of the three matrices is the number of modes de�ned in the SCR mode
transition table.). The automated procedure can be used to check the invariant properties

18

or to verify the independently given assertions. Also, we can use the CTG and matrix M,
A, and B for other kinds of analysis. Due to time and space limit, these analysis are only
introduced and highlighted here.

1. Generate test cases from the CTG. For CTG graphs, we can develop test re-
quirements that are independent of the design for the system. We can choose a type of
coverage, for example, branch coverage, to generate test requirement (coverage paths).
For the cruise control system, we list the test requirements, the branch coverage paths,
test cases are therefore the sequences of events that can cause each path to be covered.
For instance, test requirements requires to cover the following paths:

� O�!Inactive

� O�!Inactive!O�

� O�!Inactive!Cruise

� O�!Inactive!Cruise!O�

� O�!Inactive!Cruise!Inactive

� O�!Inactive!Cruise!Override

� O�!Inactive!Cruise!Override!O�

� O�!Inactive!Cruise!Override!Inactive

� O�!Inactive!Cruise!Override!Cruise

2. Non-deterministic case. This does not matter in the invariant detection algorithm.
It can be viewed that two input arc to a mode has the same condition event. At time
t, only only one arc can be chosen. They have been represented as \exclusive or" in
the CTG.

3. Multi-mode class case. In this paper, we only discuss the mode invariants in a mod-
eclass, in case of a multi-mode class, we can �nd out mode invariants under di�erent
modeclass case. Because the system will always be at one modeclass at a time, so we
can view the system at a particular time period as in one modeclass. This will not
a�ect the invariant detection method.

7 Conclusions

This paper uses SCR speci�cations mode transition tables to derive mode invariants for the
speci�ed system. The Conditioned Transition Graph(CTG) and two corresponding matrices
are introduced to help to �nd the invariants. This invariant detection method is applied
to the cruise control problem and results. This method provides a mechanical procedure

19

that can be easily automated. It views the SCR speci�cations from the SCR structure's
point of view and analyzes mode invariants as structural properties. It presents a new way
to analyze software requirements documents and detects implicitly implied system property
information that can be very useful and important in understanding, developing, and testing
the software system. Related issues such as generating test cases that are independent of the
design structure based on the SCR speci�cations are discussed to reveal possible research
problems and directions in the future.

References

[AFB+88] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. Software
requirements for the A-7E aircraft. Technical report, Naval Research Laboratory,
1988.

[AG93] J. M. Atlee and J. Gannon. State-based model checking of event-driven system
requirements. IEEE Transactions on Software Engineering, 19(1):24{40, January
1993.

[Atl94] J. M. Atlee. Native model-checking of SCR requirements. In Fourth International
SCR Workshop, November 1994.

[Bro89] M. Browne. Automated Veri�cation of Finite State Machines Using Temporal
Logic. PhD thesis, Department of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, 1989.

[Dav93] A. M. Davis. Software Requirements. PTR Prentice Hall, Englewood Cli�s, NJ,
1993.

[Hen80] K. Heninger. Specifying software requirements for complex systems: New tech-
niques and their applications. IEEE Transactions on Software Engineering, SE-
6(1):2{12, January 1980.

[HLK93] C. Heitmeyer, B. Labaw, and D. Kiskis. Consistency checks for SCR-style require-
ments speci�cations. Technical report, Naval Research Laboratory, December
1993.

[HPSK78] K. Heninger, D. Parnas, J. Shore, and J. Kallander. Software requirements for
the A-7E aircraft. Technical report, Naval Research Laboratory, 1978.

20

